搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空芯光子带隙光纤色散特性的实验研究

王鑫 娄淑琴 廉正刚

引用本文:
Citation:

空芯光子带隙光纤色散特性的实验研究

王鑫, 娄淑琴, 廉正刚

Experimental research on the dispersion property of hollow core photonic bandgap fiber

Wang Xin, Lou Shu-Qin, Lian Zheng-Gang
PDF
导出引用
  • 针对空芯光子带隙光纤宽带宽、高效率、高精度的色散测量需求,本文基于干涉法,提出一种适用于测量空芯光子带隙光纤宽带色散的相位提取方法,建立了基于Mach-Zehnder干涉仪的色散测量系统,开展了空芯光子带隙光纤(HC-PBGF)色散特性的实验研究,重点对研制的19 cell HC-PBGF的色散特性进行了系统的实验研究.实际测量得到19 cell HC-PBGF在14001630 nm带宽范围内的基模色散曲线,开展了HC-PBGF的高阶模色散测量研究,测量得到了19 cell HC-PBGF四条高阶模色散曲线.实验测量结果与理论仿真结果吻合,研究成果为深入探究空芯光子带隙光纤的色散特性,推进其在高功率激光脉冲传输、大容量数据通信、光纤非线性等领域的应用具有重要意义.
    Due to the unique optical properties of low loss, low nonlinearity, high threshold and low latency, hollow core bandgap fibers are endowed with high expectations in the field of high power delivery, optical fiber communication, nonlinear optics, fiber sensors, etc. Fiber dispersion, as one of the basic transmission characteristics of optical fiber, makes the light pulse broadened during transmission, thus has adverse effects on high power pulse transmission system and high speed optical communication system. Therefore, it is significant to study the dispersion characteristics of the hollow core bandgap fiber for its applications in the field of high power pulse transmission and high speed communications. Because of the simple structure of measurement system, low cost, high accuracy and relatively short length of fiber (just needing a few meters long), interferometric technique is suitable for dispersion measurement of hollow core photonic bandgap fiber. The key to obtaining the dispersion results with interferometric technique is the phase extractiton from the interferogram. In order to meet the requirements of hollow core bandgap fiber for wide bandwidth, high efficiency and high accuracy dispersion measurement, a novel phase extraction method based on interferometry is proposed in this paper, by which the precision of dispersion measurement is improved through using the whole data-set in the interferogram. Combining with the determinations of the peak and center of symmetry points, the extraction of phase information can be implemented directly from the interferogram. The experimental results of measuring a standard single mode fiber indicate that the difference between the experimental measurement and theoretical simulation is just 0.6 psnm-1km-1, which proves that this proposed method possesses high accuracy and is suitable for the measurement of hollow core bandgap fiber. Consequently, according to the proposed phase extraction method, the measurement system based on Mach-Zehnder interferometer is set up and the dispersion measurement of a 19 cell hollow core bandgap fiber with a core diameter of 26 m is carried out. Experimental results indicate that the fundamental mode dispersion curve of the 19 cell hollow core photonic bandgap fiber in a wavelength range from 1400 nm to 1630 nm can be obtained. Moreover, four high order mode dispersion curves are obtained for the first time. The measurement results are in accordance with the simulation results. These findings are of significant importance for exploring the dispersion characteristics of hollow core photonic bandgap fibers, and also conducible to their applications in the fields of high power laser delivery, high capacity data communications, optical fiber nonlinear, etc.
      通信作者: 娄淑琴, shqlou@bjtu.edu.cn
    • 基金项目: 国家自然基金(批准号:61475016,U1431119)资助的课题.
      Corresponding author: Lou Shu-Qin, shqlou@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475016, U1431119).
    [1]

    Shephard J D, Jones J D C, Hand D P, Bouwmans G, Knight J C, Russell P S J, Mangan B J 2004 Opt. Express 12 717

    [2]

    Jones D C, Bennett C R, Smith M A, Scott A M 2014 Opt. Lett. 39 3122

    [3]

    Sleiffer V, Jung Y M, Baddela N K, Surof J, Kuschnerov M, Veljanovski V, Hayes J R, Wheeler N V, Fokoua E N, Wooler J P 2014 J. Lightwave Technol. 32 854

    [4]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nature Photon. 7 279

    [5]

    Petrovich M N, Wheeler N V, Heidt A M, Baddela N K, Sandoghchi S R, Chen Y, Poletti F, Richardson D J 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 6-102014 We. A6.2

    [6]

    Terrel M A, Digonnet M J F, Fan S H 2012 J. Lightwave Technol. 30 931

    [7]

    Rothhardt J, Hörich S, Carstens H, Herrick N, Demmler S, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4605

    [8]

    Joly N Y, Nold J, Chang W, Hölzer P, Nazarkin A, Wong G K, Biancalana F, Russell P S J 2011 Phys. Rev. Lett. 106 203901

    [9]

    Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C 2005 Opt. Express 13 236

    [10]

    West J A, Smith C M, Borrelli N F, Allan D C, Koch K W 2004 Opt. Express 12 1485

    [11]

    Petrovich M N, Poletti F, Wooler J P, Heidt A M, Baddela N K, Li Z, Gray D R, Slavík R, Parmigiani F, Wheeler N V 2013 Opt. Express 21 28559

    [12]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J, Allan D C 1999 Science 285 1537

    [13]

    Cohen L G, Lin C 1977 Appl. Opt. 16 3136

    [14]

    Costa B, Mazzoni D, Puleo M, Vezzoni E 1982 IEEE J. Quantum Electron. 18 1509

    [15]

    Stone J, Marcuse D 1984 Electron. Lett. 20 751

    [16]

    Chang C C, Weiner A M 1997 IEEE J. Quantum Electron. 33 1455

    [17]

    Koch E, Chernikov S V, Taylor J R 2000 IEEE Photon. Technol. Lett. 12 864

    [18]

    Merritt P, Tatam R P, Jackson D A 1989 J. Lightwave Technol. 7 703

    [19]

    Lu P, Ding H M, Mihailov S J 2005 Meas. Sci. Technol. 16 1631

  • [1]

    Shephard J D, Jones J D C, Hand D P, Bouwmans G, Knight J C, Russell P S J, Mangan B J 2004 Opt. Express 12 717

    [2]

    Jones D C, Bennett C R, Smith M A, Scott A M 2014 Opt. Lett. 39 3122

    [3]

    Sleiffer V, Jung Y M, Baddela N K, Surof J, Kuschnerov M, Veljanovski V, Hayes J R, Wheeler N V, Fokoua E N, Wooler J P 2014 J. Lightwave Technol. 32 854

    [4]

    Poletti F, Wheeler N V, Petrovich M N, Baddela N, Fokoua E N, Hayes J R, Gray D R, Li Z, Slavík R, Richardson D J 2013 Nature Photon. 7 279

    [5]

    Petrovich M N, Wheeler N V, Heidt A M, Baddela N K, Sandoghchi S R, Chen Y, Poletti F, Richardson D J 2014 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria, July 6-102014 We. A6.2

    [6]

    Terrel M A, Digonnet M J F, Fan S H 2012 J. Lightwave Technol. 30 931

    [7]

    Rothhardt J, Hörich S, Carstens H, Herrick N, Demmler S, Limpert J, Tnnermann A 2011 Opt. Lett. 36 4605

    [8]

    Joly N Y, Nold J, Chang W, Hölzer P, Nazarkin A, Wong G K, Biancalana F, Russell P S J 2011 Phys. Rev. Lett. 106 203901

    [9]

    Roberts P J, Couny F, Sabert H, Mangan B J, Williams D P, Farr L, Mason M W, Tomlinson A, Birks T A, Knight J C 2005 Opt. Express 13 236

    [10]

    West J A, Smith C M, Borrelli N F, Allan D C, Koch K W 2004 Opt. Express 12 1485

    [11]

    Petrovich M N, Poletti F, Wooler J P, Heidt A M, Baddela N K, Li Z, Gray D R, Slavík R, Parmigiani F, Wheeler N V 2013 Opt. Express 21 28559

    [12]

    Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J, Allan D C 1999 Science 285 1537

    [13]

    Cohen L G, Lin C 1977 Appl. Opt. 16 3136

    [14]

    Costa B, Mazzoni D, Puleo M, Vezzoni E 1982 IEEE J. Quantum Electron. 18 1509

    [15]

    Stone J, Marcuse D 1984 Electron. Lett. 20 751

    [16]

    Chang C C, Weiner A M 1997 IEEE J. Quantum Electron. 33 1455

    [17]

    Koch E, Chernikov S V, Taylor J R 2000 IEEE Photon. Technol. Lett. 12 864

    [18]

    Merritt P, Tatam R P, Jackson D A 1989 J. Lightwave Technol. 7 703

    [19]

    Lu P, Ding H M, Mihailov S J 2005 Meas. Sci. Technol. 16 1631

  • [1] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性. 物理学报, 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [2] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究. 物理学报, 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [3] 陶在红, 秦媛媛, 孙斌, 孙小菡. 光纤中单光子传输方程的求解及分析. 物理学报, 2016, 65(13): 130301. doi: 10.7498/aps.65.130301
    [4] 李政颖, 孙文丰, 李子墨, 王洪海. 基于色散补偿光纤的高速光纤光栅解调方法. 物理学报, 2015, 64(23): 234207. doi: 10.7498/aps.64.234207
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [7] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [9] 张美艳, 李曙光, 姚艳艳, 张磊, 付博, 尹国冰. 微结构纤芯对光子晶体光纤基本特性的影响. 物理学报, 2010, 59(5): 3278-3285. doi: 10.7498/aps.59.3278
    [10] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [11] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [12] 杨倩倩, 侯蓝田. 八边形结构的双折射光子晶体光纤. 物理学报, 2009, 58(12): 8345-8351. doi: 10.7498/aps.58.8345
    [13] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [14] 魏东宾, 周桂耀, 赵兴涛, 苑金辉, 孟 佳, 王海云, 侯蓝田. 一种新型的多包层光子晶体光纤的分析方法. 物理学报, 2008, 57(5): 3011-3015. doi: 10.7498/aps.57.3011
    [15] 聂志强, 李 岭, 姜 彤, 沈磊剑, 李沛哲, 甘琛利, 宋建平, 张彦鹏, 卢克清. 倒V形四能级亚飞秒极化拍的三光子吸收和色散. 物理学报, 2008, 57(1): 243-251. doi: 10.7498/aps.57.243
    [16] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [17] 张德生, 董孝义, 张伟刚, 王 志. 用阶跃有效折射率模型研究光子晶体光纤色散特性. 物理学报, 2005, 54(3): 1235-1240. doi: 10.7498/aps.54.1235
    [18] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [19] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [20] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
计量
  • 文章访问数:  2391
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

空芯光子带隙光纤色散特性的实验研究

  • 1. 北京交通大学电子信息工程学院, 北京 100044;
  • 2. 武汉长盈通光电技术有限公司, 武汉 430074;
  • 3. 
  • 通信作者: 娄淑琴, shqlou@bjtu.edu.cn
    基金项目: 国家自然基金(批准号:61475016,U1431119)资助的课题.

摘要: 针对空芯光子带隙光纤宽带宽、高效率、高精度的色散测量需求,本文基于干涉法,提出一种适用于测量空芯光子带隙光纤宽带色散的相位提取方法,建立了基于Mach-Zehnder干涉仪的色散测量系统,开展了空芯光子带隙光纤(HC-PBGF)色散特性的实验研究,重点对研制的19 cell HC-PBGF的色散特性进行了系统的实验研究.实际测量得到19 cell HC-PBGF在14001630 nm带宽范围内的基模色散曲线,开展了HC-PBGF的高阶模色散测量研究,测量得到了19 cell HC-PBGF四条高阶模色散曲线.实验测量结果与理论仿真结果吻合,研究成果为深入探究空芯光子带隙光纤的色散特性,推进其在高功率激光脉冲传输、大容量数据通信、光纤非线性等领域的应用具有重要意义.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回