搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对氨基苯甲酸调控CsPbIBr2钙钛矿的结晶及其光伏性能

孟凡宁 王芳 程龙 孙志岩 王桂强

引用本文:
Citation:

对氨基苯甲酸调控CsPbIBr2钙钛矿的结晶及其光伏性能

孟凡宁, 王芳, 程龙, 孙志岩, 王桂强

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fan-Ning, WANG Fang, CHENG Long, SUN Zhi-Yan, WANG Gui-Qiang
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 无机CsPbIBr2钙钛矿具有较高的相稳定性和较宽的带隙,可用于研发钙钛矿叠层电池或半透明电池技术,具有良好的发展潜力。高质量的CsPbIBr2钙钛矿薄膜是制备高效钙钛矿太阳能电池的关键。为了提高CsPbIBr2钙钛矿薄膜的结晶质量,本文将对氨基苯甲酸(PABA)添加到钙钛矿前驱体中以调控其结晶过程。由于C=O和Pb2+具有较强的配位作用,同时-NH2与卤素阴离子可以形成氢键,前驱体溶液中形成了新的亚稳态中间相。该中间相减缓了钙钛矿的结晶速率,调控了晶粒的生长,制备了晶粒尺寸增大且致密的钙钛矿薄膜。本文采用电化学测试和光谱分析相结合的表征方法分析了添加PABA后钙钛矿薄膜的质量及相应电池的光伏性能。结果表明:添加PABA后,钙钛矿薄膜的结晶质量提高、光吸收增强、缺陷密度减小。相应电池的光电转换效率提高了约22%。未封装的电池在空气中存放1500 h后,平均效率依然保持了初始值的80%,表现出较高的稳定性。
    Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, in comparison with CsPbI3 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To address this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectroscopy indicates the existence of coordination interaction between C=O and Pb2+ and the formation of hydrogen bonds between -NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectroscopy and X-ray diffraction (XRD) spectra demonstrate that a new intermediate phase, PABA·Pb…Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are employed to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared to that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
  • [1]

    Zhu P, Chen C, Dai J, Zhang Y, Mao R, Chen S, Huang J, Zhu J 2024 Adv. Mater. 36 2307357

    [2]

    Deng F, Song X, Li Y, Zhang W, Tao X 2024 Chem. Eng. J. 489 151228

    [3]

    Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415

    [4]

    Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754

    [5]

    You Y, Tian W, Wang M, Cao F, Sun H, Li L 2020 Adv. Mater. Inter. 7 2000537

    [6]

    Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16

    [7]

    He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960

    [8]

    Pan J, Zhang X, Zheng Y, Xiang W 2021 Sol. Energy Mater. Sol. Cells 221 110878

    [9]

    Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W 2019 Sol. RRL 3 1900135

    [10]

    Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801(王桂强, 王东升,毕佳宇,常嘉润,孟凡宁 2023 物理学报 72 158801)

    [11]

    Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEng. Comm. 26 4376

    [12]

    He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954

    [13]

    Liu X, Jing Y, Wang C, Wang X, Li R, Xu Y, Yan Z, Zhang H, Wu J, Lan Z 2023 Adv. Mater. Inter. 10 2202159

    [14]

    Zhang J, Duan J, Zhang Q, Guo Q, Yan F, Yang X, Duan Y, Tang Q 2022 Chem. Eng. J. 431 134230

    [15]

    Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802(王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802)

    [16]

    Wang G, Chang J, Bi J, Zhang W, Meng F 2022 Sol. RRL 6 2200656

    [17]

    Zhuang R, Wang L, Qiu J, Xie L, Miao X, Zhang X, Hua Y 2023 Chem. Eng. J. 463 142449

    [18]

    Chen S, Wang J, Yu C, Jiang N, Wang Z, Zhou Y, He C, Fang K, Liu B, Zhang J, Li Y, Li C, Chen P, Duan Y 2022 Sol. RRL 6 2200405

    [19]

    Sun Q, Wang T, Zhou C, Zhang C, Shao Y, Liu X, Wang Y, Lin J, Chen X 2023 J. Alloys Compd. 960 170629

    [20]

    Cao K, Huang Y, Ge M, Huang F, Shi W, Wu Y, Cheng Y, Qian J, Liu L, Chen S 2021 ACS Appl. Mater. Interfaces 13 26013

    [21]

    An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750

    [22]

    Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902

    [23]

    Miao Y, Ren M, Chen Y, Wang H, Chen H, Liu X, Wang T, Zhao Y 2023 Nat. Sustain. 6 1465

    [24]

    Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol-ger 9 2100312

    [25]

    Cao X, Hao L, Liu Z, Su G, He X, Zeng Q, Wei J 2022 Chem. Eng. J. 437 135458

    [26]

    Du Y, Tian Q, Chang X, Fang J, Gu X, He X, Ren X, Zhao K, Liu S 2022 Adv. Mater. 34 2106750

    [27]

    Huang X, Deng G, Zhan S, Cao F, Cheng F, Yin J, Li J, Wu B, Zheng N 2022 ACS Cent. Sci. 8 1008

    [28]

    Cheng X, Gan X, Jin G, Chen Z, Li N ChemSusChem 18 202401366

    [29]

    Wu S, Yun T, Zheng C, Luo X, Qiu P, Yu H, Wang Q, Gao J, Lu X, Gao X, Shui L, Wu S, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297

    [30]

    Bi J, Wang D, Chang J, Li J, Meng F, Wang G 2023 J. Alloys Compd. 965 171441

    [31]

    Wang S, Wang P, Shi B, Sun C, Sun H, Qi S, Huang Q, Xu S, Zhao Y, Zhang X 2023 Adv. Mater. 35 2300581

    [32]

    Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942

    [33]

    Du Z, Li R, Lu Y, Deng C, Lin J, Wu J, Lan Z 2024 ACS Appl. Nano Mater. 7 5454

    [34]

    Xu Y, Zhang H, Jing Y, Wang X, Gan J, Yan Z, Liu X, Wu J, Lan Z 2023 Appl. Surf. Sci. 619 156674

    [35]

    Zhou Q, Tang S, Yuan G, Zhu W, Huang Y, Li S, Lin M 2022 J. Alloys Compd. 895 162529

    [36]

    Xu Y, Zhang H, Liu F, Li R, Jing Y, Wang X, Wu J, Zhang J, Lan Z 2024 Appl. Surf. Sci. 658 159831

    [37]

    Wang X, Xu Y, Zhang H, Yan Z, Jing Y, Liu X, Wu J, Lan Z 2022 Adv. Sustain. Syst. 6 2200074

    [38]

    He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954

    [39]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134

    [40]

    Wang G, Chang J, Bi J, Wang D, Meng F 2024 Cryst. Growth Des. 24 817

    [41]

    Qi Z, Li J, Zhang X, Dou J, Guo Q, Zhao Y, Yang P, Tang Q, Duan J 2024 ACS Appl. Mater. Interfaces 16 14974

    [42]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672

    [43]

    Bi J, Chang J, Lei M, Meng F, Wang G 2023 Energy Technol-ger 11 2201459

    [44]

    Zhao F, Guo Y, Yang P, Tao J, Jiang J, Chu J 2023 J. Alloys Compd. 930 167377

    [45]

    Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387

    [46]

    Xu Y, Li G, Jing Y, Zhang H, Wang X, Lu Y, Wu J, Lan Z 2022 J. Colloid Interface Sci. 608 40

    [47]

    Chai W, Ma J, Zhu W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868

    [48]

    Shi L, Yuan H, Sun X, Li X, Zhu W, Wang J, Duan L, Li Q, Zhou Z, Huang Z, Ban X, Zhang D 2021 ACS Appl. Energy Mater. 4 10584

    [49]

    Wang D, Li W, Li R, Sun W, Wu J, Lan Z 2021 Sol. RRL 5 2100375

    [50]

    Liu J, He Q, Bi J, Lei M, Zhang W, Wang G 2021 Chem. Eng. J. 424 130324

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.73.20231846
    [4] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, doi: 10.7498/aps.73.20231139
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, doi: 10.7498/aps.72.20221461
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, doi: 10.7498/aps.71.20220725
    [10] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, doi: 10.7498/aps.71.20220171
    [11] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.71.20211930
    [12] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, doi: 10.7498/aps.71.20211074
    [13] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, doi: 10.7498/aps.70.20201896
    [14] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, doi: 10.7498/aps.68.20190569
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, doi: 10.7498/aps.66.018401
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, doi: 10.7498/aps.64.033301
    [19] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, doi: 10.7498/aps.64.038402
    [20] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, doi: 10.7498/aps.64.038802
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-29

/

返回文章
返回