搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对氨基苯甲酸调控CsPbIBr2钙钛矿的结晶及其光伏性能

孟凡宁 王芳 程龙 孙志岩 王桂强

引用本文:
Citation:

对氨基苯甲酸调控CsPbIBr2钙钛矿的结晶及其光伏性能

孟凡宁, 王芳, 程龙, 孙志岩, 王桂强

Enhancing crystallization and photovoltaic performance of CsPbIBr2 perovskite through p-aminobenzoic acid

MENG Fanning, WANG Fang, CHENG Long, SUN Zhiyan, WANG Guiqiang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 无机CsPbIBr2钙钛矿具有较高的相稳定性和较宽的带隙, 可用于研发钙钛矿叠层电池或半透明电池技术, 具有良好的发展潜力. 高质量的CsPbIBr2钙钛矿薄膜是制备高效钙钛矿太阳能电池的关键. 为了提高CsPbIBr2钙钛矿薄膜的结晶质量, 本文将对氨基苯甲酸(PABA)添加到钙钛矿前驱体中以调控其结晶过程. 由于C=O和Pb2+具有较强的配位作用, 同时—NH2与卤素阴离子可以形成氢键, 前驱体溶液中形成了新的亚稳态中间相. 该中间相减缓了钙钛矿的结晶速率, 调控了晶粒的生长, 制备了晶粒尺寸增大且致密的钙钛矿薄膜. 本文采用电化学测试和光谱分析相结合的表征方法分析了添加PABA后钙钛矿薄膜的质量及相应电池的光伏性能. 结果表明, 添加PABA后, 钙钛矿薄膜的结晶质量提高、光吸收增强、缺陷密度减小. 相应电池的光电转换效率提高了约22%. 未封装的电池在空气中存放1500 h后, 平均效率依然保持了初始值的80%, 表现出较高的稳定性.
    Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, compared with CsPbI2 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To solve this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectrum indicates the existence of coordination interaction between C=O and Pb²+ and the formation of hydrogen bonds between —NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectrum and X-ray diffraction (XRD) spectrum demonstrate that a new intermediate phase, PABA·Pb···Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are used to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared with that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
  • 图 1  (a) PABA分子的结构和静电势; (b) CsPbIBr2, PABA和添加PABA后CsPbIBr2样品的FTIR谱图; (c) CsPbIBr2和添加PABA后CsPbIBr2前驱体的UV-Vis谱图; (d) PbBr2和添加PABA后PbBr2的XRD谱图

    Fig. 1.  (a) Molecular structure and electrostatic potential of PABA; (b) FTIR spectra of CsPbIBr2, PABA and CsPbIBr2 with PABA; (c) UV-Vis spectra of the precursor of CsPbIBr2 and CsPbIBr2 with PABA; (d) XRD patterns of PbBr2 and PbBr2 with PABA.

    图 2  (a)—(c) CsPbIBr2钙钛矿和添加PABA后CsPbIBr2钙钛矿结晶过程的颜色演变和XRD谱图; (d) PABA调控CsPbIBr2钙钛矿结晶的示意图

    Fig. 2.  (a)–(c) Color evolution and XRD patterns of the perovskite of CsPbIBr2 and CsPbIBr2 with PABA; (d) schematic of the crystallization of CsPbIBr2 perovskite regulated by PABA.

    图 3  (a) PABA的热失重曲线; (b) 添加PABA后CsPbIBr2钙钛矿的EDS图像; (c), (d) CsPbIBr2和添加PABA后CsPbIBr2钙钛矿薄膜的SEM图像

    Fig. 3.  (a) Thermogravimetric analysis of PABA; (b) EDS mapping of CsPbIBr2 with PABA; (c), (d) SEM images of CsPbIBr2 and CsPbIBr2 with PABA perovskite.

    图 4  CsPbIBr2和添加PABA后CsPbIBr2钙钛矿薄膜的性能分析 (a) XRD; (b) UV-Vis;

    Fig. 4.  Properties analysis of the perovskite films of CsPbIBr2 and CsPbIBr2 with PABA: (a) XRD; (b) UV-Vis; (c) dark current-voltage curves of the electron-only devices; (d) linear sweep voltammetry curves.

    图 5  CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿所组装电池的光伏性能 (a) J-V特性曲线; (b) 不同波长的单色光照射下两种电池的光子-电子转化效率和积分电流密度曲线; (c) 最大功率点的稳定功率输出曲线; (d) 30块电池的PCE分布

    Fig. 5.  Photovoltaic performance of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) J-V curves; (b) the incident photon to current conversion efficiency and integrated current density curves; (c) stable power output curves at maximum power points; (d) PCE distribution of 30 cells

    图 6  CsPbIBr2和添加PABA的CsPbIBr2两种钙钛矿电池的电化学测试和光谱分析 (a) 暗电流-电压曲线; (b) Mott-Schottky曲线; (c) Nyquist图; (d) 玻璃/CsPbIBr2/碳电极和玻璃/添加PABA的CsPbIBr2/碳电极两种半电池的PL光谱

    Fig. 6.  Electrochemical tests and spectral analysis of the devices fabricated by CsPbIBr2 and CsPbIBr2 with PABA perovskite: (a) Dark current-voltage curves; (b) Mott-Schottky curves; (c) Nyquist plots; (d) PL spectra of half-cells fabricated by glass/CsPbIBr2/carbon electrode and glass/CsPbIBr2 with PABA /carbon electrode.

    图 7  (a) 20—25 ℃, 20%—30% RH、空气环境中两种钙钛矿薄膜的颜色随时间变化的图像; (b)相同条件下未封装的电池PCE随时间的变化; (c) 在85 ℃、干燥的N2手套箱中未封装的电池PCE随时间的变化; (d) 85% RH、空气条件下未封装的电池PCE随时间的变化

    Fig. 7.  (a) Images of the color evolution of different perovskite films at 20–25 ℃, 20%–30% RH, and air atmosphere; (b) curves of the PCE evolution of unencapsulated cells at the same condition; (c) curves of the PCE evolution of unencapsulated cells at 85 ℃ and dry N2 atmosphere; (d) curves of the PCE evolution of unencapsulated cells at 85% RH and air atmosphere.

    表 1  已报道的碳基CsPbIBr2 PSCs的光伏参数

    Table 1.  Photovoltaic parameters of carbon-based CsPbIBr2 PSCs reported previously.

    电池结构 Jsc/(mA·cm–2) Voc/V FF/% PCE/% Ref.
    ITO/TiO2/CsPbIBr2/Carbon 11.87 1.312 68.4 10.65 本研究
    FTO/SnO2/CsPbIBr2/Carbon 9.23 1.08 0.60 5.95 [32]
    ITO/TiO2/CsPbIBr2/CuSCN/Carbon 10.01 1.19 0.60 7.17 [33]
    ITO/TiO2/CsPbIBr2/Ti3C2Clx/Carbon 11.56 1.29 69.93 10.43 [34]
    FTO/TiO2/CsPbIBr2/GQDs/Carbon 11.93 1.25 65.4 9.8 [35]
    ITO/TiO2/CsPbIBr2/Carbon 11.64 1.31 67 10.23 [36]
    ITO/TiO2/CsPbIBr2/Carbon 11.69 1.29 66.97 10.10 [37]
    FTO/TiO2/CsPbIBr2/Carbon 11.25 1.32 71.9 10.68 [38]
    FTO/TiO2/CsPbIBr2/DES/Carbon 9.2 1.24 61.5 7.04 [39]
    FTO/TiO2/m-TiO2/CsPbIBr2/Carbon 11.67 1.24 70 10.13 [40]
    FTO/TiO2/ET/CsPbIBr2/Carbon 11.63 1.325 72.23 11.13 [41]
    FTO/TiO2/PPC-CsPbIBr2/Carbon 10.25 1.25 57.5 7.36 [42]
    ITO/TiO2/ODTC-CsPbIBr2/Carbon 11.48 1.30 68 10.15 [13]
    FTO/TiO2/m-TiO2/PTU-CsPbIBr2/Carbon 11.28 1.26 71 10.09 [43]
    FTO/Li: TiO2/CsPbIBr2/Carbon 10.01 1.26 64 8.09 [44]
    FTO/TiO2/CsPbIBr2-SAM/Carbon 11.81 1.317 71.1 11.06 [45]
    FTO/TiO2/Cd- CsPbIBr2/carbon 11.53 1.324 69.63 10.63 [46]
    FTO/TiO2/PMMA/CsPbIBr2/carbon 11.36 1.307 62 9.21 [47]
    FTO/TiO2/MAAc/CsPbIBr2/carbon 10.86 1.26 64.56 8.85 [48]
    FTO/TiO2/CsPbIBr2/P3 HT:PC61BM/Carbon 11.79 1.31 74.47 11.54 [49]
    FTO/TiO2/CsPbIBr2/Carbon 10.88 1.08 64 7.52 [50]
    下载: 导出CSV
  • [1]

    Zhu P C, Chen C L, Dai J Q, Zhang Y Z, Mao R Q, Chen S S, Huang J S, Zhu J 2024 Adv. Mater. 36 2307357Google Scholar

    [2]

    Deng F, Song X F, Li Y, Zhang W Q, Tao X 2024 Chem. Eng. J. 489 151228Google Scholar

    [3]

    Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415Google Scholar

    [4]

    Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754Google Scholar

    [5]

    You Y B, Tian W, Wang M, Cao F R, Sun H X, Li L 2020 Adv. Mater. Interface 7 2000537Google Scholar

    [6]

    Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16Google Scholar

    [7]

    He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960Google Scholar

    [8]

    Pan J Y, Zhang X, Zheng Y, Xiang W C 2021 Sol. Energy Mater. Sol. Cells 221 110878Google Scholar

    [9]

    Guo Y X, Yin X T, Liu J, Wen S, Wu Y T, Que W X 2019 Sol. RRL 3 1900135Google Scholar

    [10]

    王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁 2023 物理学报 72 158801Google Scholar

    Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801Google Scholar

    [11]

    Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEngComm 26 4376Google Scholar

    [12]

    He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954Google Scholar

    [13]

    Liu X, Jing Y, Wang C Y, Wang X, Li R S, Xu Y, Yan Z L, Zhang H Y, Wu J H, Lan Z 2023 Adv. Mater. Interface 10 2202159Google Scholar

    [14]

    Zhang J S, Duan J L, Zhang Q Y, Guo Q Y, Yan F R, Yang X Y, Duan Y Y, Tang Q W 2022 Chem. Eng. J. 431 134230Google Scholar

    [15]

    王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802Google Scholar

    Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802Google Scholar

    [16]

    Wang G Q, Chang J R, Bi J Y, Zhang W, Meng F N 2022 Sol. RRL 6 2200656Google Scholar

    [17]

    Zhuang R S, Wang L Q, Qiu J M, Xie L, Miao X H, Zhang X L, Hua Y 2023 Chem. Eng. J. 463 142449Google Scholar

    [18]

    Chen S M, Wang J T, Yu C, Jiang N, Wang Z Y, Zhou Y B, He C Y, Fang K, Liu B, Zhang J, Li Y, Li C N, Chen P, Duan Y 2022 Sol. RRL 6 2200405Google Scholar

    [19]

    Sun Q, Wang T, Zhou C C, Zhang C, Shao Y, Liu X L, Wang Y N, Lin J, Chen X F 2023 J. Alloys Compd. 960 170629Google Scholar

    [20]

    Cao K, Huang Y, Ge M R, Huang F, Shi W J, Wu Y P, Cheng Y F, Qian J, Liu LH, Chen S F 2021 ACS Appl. Mater. Interfaces 13 26013Google Scholar

    [21]

    An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750Google Scholar

    [22]

    Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902Google Scholar

    [23]

    Miao Y F, Ren M, Chen Y T, Wang H F, Chen H R, Liu X M, Wang T F, Zhao Y X 2023 Nat. Sustain. 6 1465Google Scholar

    [24]

    Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol. 9 2100312Google Scholar

    [25]

    Cao X B, Hao L, Liu Z J, Su G Y, He X, Zeng Q G, Wei J Q 2022 Chem. Eng. J. 437 135458Google Scholar

    [26]

    Du Y C, Tian Q W, Chang X M, Fang J J, Gu X J, He X J, Ren X L, Zhao K, Liu S Z 2022 Adv. Mater. 34 2106750Google Scholar

    [27]

    Huang X F, Deng G C, Zhan S Q, Cao F, Cheng F W, Yin J, Li J, Wu B H, Zheng N F 2022 ACS Cent. Sci. 8 1008Google Scholar

    [28]

    Cheng X, Gan X G, Jin G, Chen Z L, Li N 2024 ChemSusChem 18 202401366

    [29]

    Wu S C, Yun T, Zheng C Q, Luo X Y, Qiu P, Yu H Y, Wang Q W, Gao J W, Lu X B, Gao X S, Shui L L, Wu S J, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297Google Scholar

    [30]

    Bi J Y, Wang D S, Chang J R, Li J H, Meng F N, Wang G Q 2023 J. Alloys Compd. 965 171441Google Scholar

    [31]

    Wang S L, Wang P Y, Shi B, Sun C, Sun H R, Qi S S, Huang Q, Xu S Z, Zhao Y, Zhang X D 2023 Adv. Mater. 35 2300581Google Scholar

    [32]

    Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942Google Scholar

    [33]

    Du Z B, Li R S, Lu Y, Deng C Y, Lin J M, Wu J H, Lan Z 2024 ACS Appl. Nano Mater. 7 5454Google Scholar

    [34]

    Xu Y, Zhang H Y, Jing Y, Wang X, Gan J Q, Yan Z L, Liu X, Wu J H, Lan Z 2023 Appl. Surf. Sci. 619 156674Google Scholar

    [35]

    Zhou Q Z, Tang S Y, Yuan G H, Zhu W L, Huang Y Y, Li S J, Lin M J 2022 J. Alloys Compd. 895 162529Google Scholar

    [36]

    Xu Y, Zhang H Y, Liu F L, Li R S, Jing Y, Wang X, Wu J H, Zhang J Y, Lan Z 2024 Appl. Surf. Sci. 658 159831Google Scholar

    [37]

    Wang X, Xu Y, Zhang H Y, Yan Z L, Jing Y, Liu X, Wu J H, Lan Z 2022 Adv. Sustain. Syst. 6 2200074Google Scholar

    [38]

    He W, Duan X X, Tang Q W, Dou J, Duan J L 2024 Chem. Commun. 60 4954Google Scholar

    [39]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134Google Scholar

    [40]

    Wang G Q, Chang J R, Bi J Y, Wang D S, Meng F N 2024 Cryst. Growth Des. 24 817Google Scholar

    [41]

    Qi Z T, Li J B, Zhang X Y, Dou J, Guo Q Y, Zhao Y Y, Yang P Z, Tang Q W, Duan J L 2024 ACS Appl. Mater. Interfaces 16 14974Google Scholar

    [42]

    Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672Google Scholar

    [43]

    Bi J Y, Chang J R, Lei M, Meng F N, Wang G Q 2023 Energy Technol. 11 2201459Google Scholar

    [44]

    Zhao F, Guo Y X, Yang P Z, Tao J H, Jiang J C, Chu J H 2023 J. Alloys Compd. 930 167377Google Scholar

    [45]

    Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387Google Scholar

    [46]

    Xu Y, Li G, Jing Y, Zhang H Y, Wang X, Lu Y, Wu J H, Lan Z 2022 J. Colloid Interface Sci. 608 40Google Scholar

    [47]

    Chai W M, Ma J X, Zhu W D, Chen D Z, Xi H, Zhang J C, Zhang C F, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868Google Scholar

    [48]

    Shi L X, Yuan H Y, Sun X G, Li X Y, Zhu W B, Wang J, Duan L S, Li Q L, Zhou Z, Huang Z G, Ban X X, Zhang D G 2021 ACS Appl. Energy Mater. 4 10584Google Scholar

    [49]

    Wang D, Li W J, Li R S, Sun W H, Wu J H, Lan Z 2021 Sol. RRL 5 2100375Google Scholar

    [50]

    Liu J Q, He Q Q, Bi J Y, Lei M, Zhang W, Wang G Q 2021 Chem. Eng. J. 424 130324Google Scholar

  • [1] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, doi: 10.7498/aps.73.20231568
    [2] 张晓春, 王立坤, 商文丽, 万政慧, 岳鑫, 杨华翼, 李婷, 王辉. 基于双修饰策略制备高性能反式钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.73.20241238
    [3] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.73.20231846
    [4] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, doi: 10.7498/aps.73.20231139
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, doi: 10.7498/aps.72.20221461
    [8] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, doi: 10.7498/aps.71.20220359
    [9] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, doi: 10.7498/aps.71.20220725
    [10] 马书鹏, 林飞宇, 罗媛, 朱刘, 郭学益, 杨英. 多步旋涂过程中CsPbBr3无机钙钛矿成膜机理. 物理学报, doi: 10.7498/aps.71.20220171
    [11] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, doi: 10.7498/aps.71.20211930
    [12] 王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟. 醋酸纤维素提高CsPbIBr2无机钙钛矿薄膜质量及其太阳能电池光电性能. 物理学报, doi: 10.7498/aps.71.20211074
    [13] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, doi: 10.7498/aps.70.20201896
    [14] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, doi: 10.7498/aps.68.20190569
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, doi: 10.7498/aps.66.018401
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  193
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-15
  • 修回日期:  2025-04-17
  • 上网日期:  2025-04-29

/

返回文章
返回