-
无机CsPbIBr2钙钛矿具有较高的相稳定性和较宽的带隙,可用于研发钙钛矿叠层电池或半透明电池技术,具有良好的发展潜力。高质量的CsPbIBr2钙钛矿薄膜是制备高效钙钛矿太阳能电池的关键。为了提高CsPbIBr2钙钛矿薄膜的结晶质量,本文将对氨基苯甲酸(PABA)添加到钙钛矿前驱体中以调控其结晶过程。由于C=O和Pb2+具有较强的配位作用,同时-NH2与卤素阴离子可以形成氢键,前驱体溶液中形成了新的亚稳态中间相。该中间相减缓了钙钛矿的结晶速率,调控了晶粒的生长,制备了晶粒尺寸增大且致密的钙钛矿薄膜。本文采用电化学测试和光谱分析相结合的表征方法分析了添加PABA后钙钛矿薄膜的质量及相应电池的光伏性能。结果表明:添加PABA后,钙钛矿薄膜的结晶质量提高、光吸收增强、缺陷密度减小。相应电池的光电转换效率提高了约22%。未封装的电池在空气中存放1500 h后,平均效率依然保持了初始值的80%,表现出较高的稳定性。Inorganic CsPbIBr2 perovskite features high phase stability and light absorption coefficient, making it suitable for the development of perovskite tandem cells or semi-transparent cells. High-quality CsPbIBr2 perovskite films are of crucial importance for fabricating efficient solar cells. However, in comparison with CsPbI3 and CsPbI2Br, the CsPbIBr2 precursor has poor crystallinity and low film coverage, which is prone to generating pinholes and defects. Therefore, serious charge recombination often occurs inside the devices. To address this problem, p-aminobenzoic acid (PABA) is added to the CsPbIBr2 precursor to regulate its crystallization dynamics in this work. Electrostatic potential distribution of PABA shows that the electron-rich regions (negative charge regions) are mainly located near the C=O. Fourier transform infrared spectroscopy indicates the existence of coordination interaction between C=O and Pb2+ and the formation of hydrogen bonds between -NH2 and halide anions. Ultraviolet-visible absorption (UV-Vis) spectroscopy and X-ray diffraction (XRD) spectra demonstrate that a new intermediate phase, PABA·Pb…Br(I), is formed between PABA molecules and the components of CsPbIBr2 precursor. The formation of this intermediate phase slows down the crystallization rate of the perovskite, regulates the grain growth, and enables the preparation of dense perovskite films. XRD, UV-Vis, space charge limited current, and linear sweep voltammetry are employed to characterize the film quality. After the addition of PABA, the film quality of CsPbIBr2 perovskite is improved. Thus, the light absorption is enhanced. The defect density is reduced. And the conductivity is increased. The efficiency of the champion cell increases to 10.65% compared to that of the control cell (8.76%). Further, dark current-voltage curves, Mott-Schottky curves, electrochemical impedance spectra, and photoluminescence spectra are utilized to analyze the reasons for the improved photovoltaic performance. After the addition of PABA, the CsPbIBr2 device exhibits reduced leakage current, enhanced built-in electric field, suppressed charge recombination, and improved charge extraction at the interface. In addition to the enhancement in photovoltaic efficiency, the PABA-regulated perovskite cells also exhibit high stability. After being stored in air for 1500 h, the average efficiency of the unencapsulated cells remains 80% of the initial value.
-
Keywords:
- CsPbIBr2 /
- inorganic perovskite /
- crystallization regulation /
- perovskite solar cells
-
[1] Zhu P, Chen C, Dai J, Zhang Y, Mao R, Chen S, Huang J, Zhu J 2024 Adv. Mater. 36 2307357
[2] Deng F, Song X, Li Y, Zhang W, Tao X 2024 Chem. Eng. J. 489 151228
[3] Almutairi B S, Khan M I, Mujtaba A, Subhani W S, Yousef E S, Alotaibi N, Hussain S, Almaral-Sánchez J L 2024 Opt. Mater. 152 115415
[4] Khan M I, Mujtaba A, Khan S A, Laref A, Amami M 2024 J. Sol-Gel Sci. Technol. 111 754
[5] You Y, Tian W, Wang M, Cao F, Sun H, Li L 2020 Adv. Mater. Inter. 7 2000537
[6] Chang Q, An Y, Cao H, Pan Y, Zhao L, Chen Y, We Y, Tsang S W, Yip H L, Sun L, Yu Z 2024 J. Energy Chem. 90 16
[7] He J, Su J, Di J, Lin Z, Zhang S, Ma J, Zhang J, Liu S, Chang J, Hao Y 2022 Nano Energy 94 106960
[8] Pan J, Zhang X, Zheng Y, Xiang W 2021 Sol. Energy Mater. Sol. Cells 221 110878
[9] Guo Y, Yin X, Liu J, Wen S, Wu Y, Que W 2019 Sol. RRL 3 1900135
[10] Wang G Q, Wang D S, Bi J Y, Chang J R, Meng F N 2023 Acta Phys. Sin. 72 158801(王桂强, 王东升,毕佳宇,常嘉润,孟凡宁 2023 物理学报 72 158801)
[11] Wang G Q, Chang J R, Wang D S, Bi J Y, Meng F N 2024 CrystEng. Comm. 26 4376
[12] He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954
[13] Liu X, Jing Y, Wang C, Wang X, Li R, Xu Y, Yan Z, Zhang H, Wu J, Lan Z 2023 Adv. Mater. Inter. 10 2202159
[14] Zhang J, Duan J, Zhang Q, Guo Q, Yan F, Yang X, Duan Y, Tang Q 2022 Chem. Eng. J. 431 134230
[15] Wang G Q, Bi J Y, Liu J Q, Lei M, Zhang W 2022 Acta Phys. Sin. 71 018802(王桂强, 毕佳宇, 刘洁琼, 雷苗, 张伟 2022 物理学报 71 018802)
[16] Wang G, Chang J, Bi J, Zhang W, Meng F 2022 Sol. RRL 6 2200656
[17] Zhuang R, Wang L, Qiu J, Xie L, Miao X, Zhang X, Hua Y 2023 Chem. Eng. J. 463 142449
[18] Chen S, Wang J, Yu C, Jiang N, Wang Z, Zhou Y, He C, Fang K, Liu B, Zhang J, Li Y, Li C, Chen P, Duan Y 2022 Sol. RRL 6 2200405
[19] Sun Q, Wang T, Zhou C, Zhang C, Shao Y, Liu X, Wang Y, Lin J, Chen X 2023 J. Alloys Compd. 960 170629
[20] Cao K, Huang Y, Ge M, Huang F, Shi W, Wu Y, Cheng Y, Qian J, Liu L, Chen S 2021 ACS Appl. Mater. Interfaces 13 26013
[21] An Z, Chen S, Lu T, Zhao P, Yang X, Li Y, Hou J 2023 J. Mater. Chem. C 11 12750
[22] Chiu P H, Hu C T, Chia S K, Su L Y, Chen P T, Liu Z Y, Lin C Y, Hsieh C C, Dai C A, Wang L 2024 Sol. RRL 8 2300902
[23] Miao Y, Ren M, Chen Y, Wang H, Chen H, Liu X, Wang T, Zhao Y 2023 Nat. Sustain. 6 1465
[24] Worsley C, Raptis D, Meroni S, Doolin A, Garcia-Rodriguez R, Davies M, Watson T 2021 Energy Technol-ger 9 2100312
[25] Cao X, Hao L, Liu Z, Su G, He X, Zeng Q, Wei J 2022 Chem. Eng. J. 437 135458
[26] Du Y, Tian Q, Chang X, Fang J, Gu X, He X, Ren X, Zhao K, Liu S 2022 Adv. Mater. 34 2106750
[27] Huang X, Deng G, Zhan S, Cao F, Cheng F, Yin J, Li J, Wu B, Zheng N 2022 ACS Cent. Sci. 8 1008
[28] Cheng X, Gan X, Jin G, Chen Z, Li N ChemSusChem 18 202401366
[29] Wu S, Yun T, Zheng C, Luo X, Qiu P, Yu H, Wang Q, Gao J, Lu X, Gao X, Shui L, Wu S, Liu J M 2024 ACS Appl. Mater. Interfaces 16 7297
[30] Bi J, Wang D, Chang J, Li J, Meng F, Wang G 2023 J. Alloys Compd. 965 171441
[31] Wang S, Wang P, Shi B, Sun C, Sun H, Qi S, Huang Q, Xu S, Zhao Y, Zhang X 2023 Adv. Mater. 35 2300581
[32] Du T, Jin L 2025 J. Sol-Gel Sci. Technol. 113 942
[33] Du Z, Li R, Lu Y, Deng C, Lin J, Wu J, Lan Z 2024 ACS Appl. Nano Mater. 7 5454
[34] Xu Y, Zhang H, Jing Y, Wang X, Gan J, Yan Z, Liu X, Wu J, Lan Z 2023 Appl. Surf. Sci. 619 156674
[35] Zhou Q, Tang S, Yuan G, Zhu W, Huang Y, Li S, Lin M 2022 J. Alloys Compd. 895 162529
[36] Xu Y, Zhang H, Liu F, Li R, Jing Y, Wang X, Wu J, Zhang J, Lan Z 2024 Appl. Surf. Sci. 658 159831
[37] Wang X, Xu Y, Zhang H, Yan Z, Jing Y, Liu X, Wu J, Lan Z 2022 Adv. Sustain. Syst. 6 2200074
[38] He W, Duan X, Tang Q, Dou J, Duan J 2024 Chem. Commun. 60 4954
[39] Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Mater. Sci. Semicond. Process. 173 108134
[40] Wang G, Chang J, Bi J, Wang D, Meng F 2024 Cryst. Growth Des. 24 817
[41] Qi Z, Li J, Zhang X, Dou J, Guo Q, Zhao Y, Yang P, Tang Q, Duan J 2024 ACS Appl. Mater. Interfaces 16 14974
[42] Choubey A, Perumal N, Muthu S P, Perumalsamy R 2024 Opt. Mater. 147 114672
[43] Bi J, Chang J, Lei M, Meng F, Wang G 2023 Energy Technol-ger 11 2201459
[44] Zhao F, Guo Y, Yang P, Tao J, Jiang J, Chu J 2023 J. Alloys Compd. 930 167377
[45] Yao X, Duan J, Zhao Y, Zhang J, Guo Q, Zhang Q, Yang X, Duan Y, Yang P, Tang Q 2023 Carbon Energy 5 387
[46] Xu Y, Li G, Jing Y, Zhang H, Wang X, Lu Y, Wu J, Lan Z 2022 J. Colloid Interface Sci. 608 40
[47] Chai W, Ma J, Zhu W, Chen D, Xi H, Zhang J, Zhang C, Hao Y 2021 ACS Appl. Mater. Interfaces 13 2868
[48] Shi L, Yuan H, Sun X, Li X, Zhu W, Wang J, Duan L, Li Q, Zhou Z, Huang Z, Ban X, Zhang D 2021 ACS Appl. Energy Mater. 4 10584
[49] Wang D, Li W, Li R, Sun W, Wu J, Lan Z 2021 Sol. RRL 5 2100375
[50] Liu J, He Q, Bi J, Lei M, Zhang W, Wang G 2021 Chem. Eng. J. 424 130324
计量
- 文章访问数: 15
- PDF下载量: 0
- 被引次数: 0