搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溶剂对钙钛矿薄膜形貌和结晶性的影响研究

王栋 朱慧敏 周忠敏 王在伟 吕思刘 逄淑平 崔光磊

引用本文:
Citation:

溶剂对钙钛矿薄膜形貌和结晶性的影响研究

王栋, 朱慧敏, 周忠敏, 王在伟, 吕思刘, 逄淑平, 崔光磊

Effect of solvent on the perovskite thin film morphology and crystallinity

Wang Dong, Zhu Hui-Min, Zhou Zhong-Min, WangZai-Wei, Lü Si-Liu, Pang Shu-Ping, CuiGuang-Lei
PDF
导出引用
  • 溶剂对钙钛矿太阳能电池器件有着至关重要的影响. 基于目前常用的N, N-二甲基甲酰胺(DMF)和丁内酯(GBL)溶剂, 一步溶液旋涂技术和介孔电池结构, 制备的钙钛矿薄膜的形貌、结晶性, 以及最终的器件光电转化效率存在较大的差异, 利用DMF作为溶剂, 效率仅为2.8%, 而基于GBL的电池效率可以达到10.1%. 结合SEM, HRTEM, XRD和UV等表征手段, 分析了钙钛矿从DMF溶液和GBL溶液中结晶析出的不同机理, 明确了溶剂跟PbI2的配位作用对钙钛矿的溶解、析出过程的制约作用, 揭示了造成器件效率差异的本质原因.
    Due to their high efficiency and low cost, organic-inorganic hybrid perovskite solar cells are attracting growing interest recently. For the most commonly studied perovskite CH3NH3PbI3, optimization of the morphology and crystallinity of CH3NH3PbI3 thin films can greatly improve the efficiency of perovskite solar cells. A homogenous and uniform perovskite film can prevent direct contact between the hole transport layer and the electron transport layer, and thus can significantly reduce charge recombination. And the high crystallinity perovskite film facilitates fast charge transportation and injection. Various studies have proved that solvent has a critical influence on both the morphology and the crystallinity of perovskite thin films. In this work, we thoroughly studied the influence of the normally used N, N-Dimethylformamide (DMF) and r-butyrolactone (GBL) solvents on perovskite morphology, crystallinity, as well as the solar cells efficiency. When using DMF as the solvent, the efficiency is only 2.8%, while the efficiency of the cell obtained based on GBL can reach 10.1%. SEM and HRTEM are employed to study the morphology and crystallinity of these two kinds of perovskite films. The perovskite film prepared using solvent DMF shows a rough capping layer consisting of strip-like perovskite crystals, and the filling of meso-TiO2 is poor. Compared with DMF, the GBL perovskite film shows a better capping layer structure consisting of large perovskite domains, and the filling of meso-TiO2 is improved as well. This great difference in capping layer morphology and meso-TiO2 filling is one reason for the different performance. Besides morphology, different defect concentrations in these two kinds of perovskite films are another crucial issue. By Combined XRD and UV techniques, the mechanisms how perovskite precipitats from DMF and GBL solutions can be disclosed. In DMF, because of its low spoiling point of 153 ℃, most of DMF solvent volatilize by spin-coating, and an intermediate MOF structure of PbI2: MAI: xDMF is formed. During thermal annealing, the unstable MOF structure breaks down and a large amount of dislocations form in perovskite films, which highly restrict the charge transport. However, the spoil point of GBL (206 ℃) is higher than that of DMF, which makes it hard to be fully volatilized by spin-coating. During the following thermal treatment, the solubility of perovskite is lowered with increasing temperature. So perovskite crystallites precipitate from the GBL first and then gradually grow up with the volatilization of the excess solvent. We finally find that coordination between the solvent and the PbI2 plays a big role on the morphology and the crystallinity of the solution-processed perovskite film, and this is responsible for the difference of the device performance.
    • 基金项目: 国家自然科学基金(批准号: 51202266), 山东省自然科学基金(批准号: ZR2013FZ001)和青岛市应用基础研究基金(批准号: 14-2-4-8-jch)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51202266), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013FZ001), and the applied fundamental research Program of Qingdao, China (Grant No. 14-2-4-8-jch).
    [1]

    Hodes G, Cahen D 2014 Nature Photon. 8 87

    [2]

    Akihiro Kojima K T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans.43 5247

    [5]

    Chung I, Lee B, He J, Chang R P, Kanatzidis M G 2012 Nature 485 486

    [6]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651

    [7]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [8]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L 2014 Angew. Chem. Int. Ed. 26 1

    [9]

    Juarez-Perez E J, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680

    [10]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [11]

    Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931

    [12]

    Lindblad R, Bi D, Park B, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H 2014 J. Phys. Chem. Lett. 5 648

    [13]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [14]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [17]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [18]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [19]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H, Wang H H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [20]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [21]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interfaces 6 9711

    [22]

    Lv S, Pang S, Zhou Y, Padture N P, Hu H, Wang L, Zhou X, Zhu H, Zhang L, Huang C, Cui G 2014 Phys. Chem. Chem. Phys.16 19206

    [23]

    Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G 2014 RSC Adv. 4 28964

    [24]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [25]

    Matteocci F, Razza S, Di Giacomo F, Casaluci S, Mincuzzi G, Brown T M, D'Epifanio A, Licoccia S, Di Carlo A 2014 Phys. Chem. Chem. Phys. 16 3918

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nature Mater. 13 897

    [27]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [28]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J-E 2014 Nature Photon. 8 250

    [29]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nature Commun. 4 2242

    [30]

    Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F, Mora-Sero I, Bisquert J 2014 Nano lett. 14 888

    [31]

    Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G 2014 Chem. Mater. 26 1485

    [32]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [33]

    Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin M K, Grätzel M 2014 J. Am. Chem. Soc. 8 362

    [34]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2013 Adv. Mater. 26 2041

    [35]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. 53 2812

  • [1]

    Hodes G, Cahen D 2014 Nature Photon. 8 87

    [2]

    Akihiro Kojima K T, Yasuo S, Tsutomu M 2009 J. Am. Chem. Soc. 131 6050

    [3]

    Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y 2014 Science 345 542

    [4]

    Singh S P, Nagarjuna P 2014 Dalton Trans.43 5247

    [5]

    Chung I, Lee B, He J, Chang R P, Kanatzidis M G 2012 Nature 485 486

    [6]

    Ogomi Y, Morita A, Tsukamoto S, Saitho T, Shen Q, Toyoda T, Yoshino K, Pandey S S, Ma T, Hayase S 2014 J. Phys. Chem. C 118 16651

    [7]

    Shi J, Dong J, Lv S, Xu Y, Zhu L, Xiao J, Xu X, Wu H, Li D, Luo Y, Meng Q 2014 Appl. Phys. Lett. 104 063901

    [8]

    Xiao M, Huang F, Huang W, Dkhissi Y, Zhu Y, Etheridge J, Gray-Weale A, Bach U, Cheng Y-B, Spiccia L 2014 Angew. Chem. Int. Ed. 26 1

    [9]

    Juarez-Perez E J, Wuβler M, Fabregat-Santiago F, Lakus-Wollny K, Mankel E, Mayer T, Jaegermann W, Mora-Sero I 2014 J. Phys. Chem. Lett. 5 680

    [10]

    Chen H, Pan X, Liu W, Cai M, Kou D, Huo Z, Fang X, Dai S 2013 Chem. Commun. 49 7277

    [11]

    Lv S, Han L, Xiao J, Zhu L, Shi J, Wei H, Xu Y, Dong J, Xu X, Li D, Wang S, Luo Y, Meng Q, Li X 2014 Chem. Commun. 50 6931

    [12]

    Lindblad R, Bi D, Park B, Oscarsson J, Gorgoi M, Siegbahn H, Odelius M, Johansson E M J, Rensmo H 2014 J. Phys. Chem. Lett. 5 648

    [13]

    Kumar M H, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix P P, Mathews N 2013 Chem. Commun. 49 11089

    [14]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Grätzel M 2012 J. Am. Chem. Soc. 134 17396

    [15]

    Eperon G E, Burlakov V M, Docampo P, Goriely A, Snaith H J 2014 Adv. Funct. Mater. 24 151

    [16]

    Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin M K, Grätzel M 2014 Adv. Funct. Mater. 24 3250

    [17]

    Carnie M J, Charbonneau C, Davies M L, Troughton J, Watson T M, Wojciechowski K, Snaith H, Worsley D A 2013 Chem. Commun. 49 7893

    [18]

    Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M 2013 Nature 499 316

    [19]

    Chen Q, Zhou H, Hong Z, Luo S, Duan H, Wang H H, Liu Y, Li G, Yang Y 2014 J. Am. Chem. Soc. 136 622

    [20]

    Liu M, Johnston M B, Snaith H J 2013 Nature 501 395

    [21]

    Shi J, Luo Y, Wei H, Luo J, Dong J, Lv S, Xiao J, Xu Y, Zhu L, Xu X, Wu H, Li D, Meng Q 2014 ACS Appl. Mater. Interfaces 6 9711

    [22]

    Lv S, Pang S, Zhou Y, Padture N P, Hu H, Wang L, Zhou X, Zhu H, Zhang L, Huang C, Cui G 2014 Phys. Chem. Chem. Phys.16 19206

    [23]

    Hu H, Wang D, Zhou Y, Zhang J, Lv S, Pang S, Chen X, Liu Z, Padture N P, Cui G 2014 RSC Adv. 4 28964

    [24]

    Zhao Y, Zhu K 2014 J. Phys. Chem. C 118 9412

    [25]

    Matteocci F, Razza S, Di Giacomo F, Casaluci S, Mincuzzi G, Brown T M, D'Epifanio A, Licoccia S, Di Carlo A 2014 Phys. Chem. Chem. Phys. 16 3918

    [26]

    Jeon N J, Noh J H, Kim Y C, Yang W S, Ryu S, Seok S I 2014 Nature Mater. 13 897

    [27]

    Jeng J Y, Chiang Y F, Lee M H, Peng S R, Guo T F, Chen P, Wen T C 2013 Adv. Mater. 25 3727

    [28]

    Marchioro A, Teuscher J, Friedrich D, Kunst M, van de Krol R, Moehl T, Grätzel M, Moser J-E 2014 Nature Photon. 8 250

    [29]

    Kim H S, Mora-Sero I, Gonzalez-Pedro V, Fabregat-Santiago F, Juarez-Perez E J, Park N G, Bisquert J 2013 Nature Commun. 4 2242

    [30]

    Gonzalez-Pedro V, Juarez-Perez E J, Arsyad W S, Barea E M, Fabregat-Santiago F, Mora-Sero I, Bisquert J 2014 Nano lett. 14 888

    [31]

    Pang S, Hu H, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui G 2014 Chem. Mater. 26 1485

    [32]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [33]

    Dualeh A, Moehl T, Tétreault N, Teuscher J, Gao P, Nazeeruddin M K, Grätzel M 2014 J. Am. Chem. Soc. 8 362

    [34]

    Conings B, Baeten L, De Dobbelaere C, D'Haen J, Manca J, Boyen H G 2013 Adv. Mater. 26 2041

    [35]

    Kazim S, Nazeeruddin M K, Grätzel M, Ahmad S 2014 Angew. Chem. 53 2812

  • [1] 金程程, 丁玲玲, 宋子馨, 陶海军. BaTiO3掺杂调控内建电场提升钙钛矿太阳能电池性能. 物理学报, 2024, 73(3): 038801. doi: 10.7498/aps.73.20231139
    [2] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [3] 罗攀, 李响, 孙学银, 谭骁洪, 罗俊, 甄良. 新型空间太阳能电池用的钙钛矿薄膜与器件的电子辐照效应. 物理学报, 2024, 73(3): 036102. doi: 10.7498/aps.73.20231568
    [4] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [5] 羊美丽, 邹丽, 程佳杰, 王佳明, 江钰帆, 郝会颖, 邢杰, 刘昊, 樊振军, 董敬敬. 聚偏氟乙烯添加剂提高CsPbBr3钙钛矿太阳能电池性能. 物理学报, 2023, 72(16): 168101. doi: 10.7498/aps.72.20230636
    [6] 李培, 徐洁, 贺朝会, 刘佳欣. 钙钛矿太阳能电池辐照实验研究. 物理学报, 2023, 72(12): 126101. doi: 10.7498/aps.72.20230230
    [7] 朱咏琪, 刘钰雪, 石洋, 吴聪聪. 甲脒碘化铅单晶基钙钛矿太阳能电池的研究. 物理学报, 2023, 72(1): 018801. doi: 10.7498/aps.72.20221461
    [8] 罗媛, 朱从潭, 马书鹏, 朱刘, 郭学益, 杨英. 低温制备SnO2电子传输层用于钙钛矿太阳能电池. 物理学报, 2022, 71(11): 118801. doi: 10.7498/aps.71.20211930
    [9] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [10] 周玚, 任信钢, 闫业强, 任昊, 杜红梅, 蔡雪原, 黄志祥. 基于双层电子传输层钙钛矿太阳能电池的物理机制. 物理学报, 2022, 71(20): 208802. doi: 10.7498/aps.71.20220725
    [11] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [12] 王佩佩, 张晨曦, 胡李纳, 李仕奇, 任炜桦, 郝玉英. 氧化镍在倒置平面钙钛矿太阳能电池中的应用进展. 物理学报, 2021, 70(11): 118801. doi: 10.7498/aps.70.20201896
    [13] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [14] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [15] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [16] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [17] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [18] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [19] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [20] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
计量
  • 文章访问数:  12879
  • PDF下载量:  8264
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-20
  • 修回日期:  2014-11-23
  • 刊出日期:  2015-02-05

/

返回文章
返回