搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体鞘层附近尘埃颗粒特性的数值模拟

吴静 刘国 姚列明 段旭如

引用本文:
Citation:

等离子体鞘层附近尘埃颗粒特性的数值模拟

吴静, 刘国, 姚列明, 段旭如

Simulation of interaction between dust particles and plasma sheath and its distribution

Wu Jing, Liu Guo, Yao Lie-Ming, Duan Xu-Ru
PDF
导出引用
  • 为了研究尘埃等离子体中尘埃颗粒以及鞘层中粒子密度分布等特性,对尘埃颗粒存在条件下等离子体鞘层结构的采取数值模拟.采用稳态无碰撞的尘埃等离子体鞘层模型,对玻姆判据、尘埃颗粒的荷电性质、平板鞘层区域的电势分布及鞘层内粒子分布特性进行了系统的数值模拟研究.计算结果显示,鞘层边缘尘埃颗粒数密度的增加、尘埃温度的升高,将引起孤立尘埃颗粒对电子吸附能力的减弱,集体效应也受到一定程度的影响;二者同时对离子玻姆速度以及鞘层厚度的增加都有着极大的促进作用.鞘层电势在靠近下极区处降落迅速,主要聚集在接近阴极极板的鞘层区域,各种微粒数密度的空间分布满足准中性条件.
    Collisionless steady plasma sheath model is taken into account to study the interaction between dusty particles and plasma sheath as well as the density distributions of electrons, ions and dusty particles. Numerical simulation results are obtained, showing that the ability of an isolated charge to absorb electrons weakens with the increase of dusty particle density and its temperature, while the collective effect strengthens with the radius of dusty particle. Simultaneously, Bohm velocity and the sheath thickness are also greatly affected. The sheath potential decreases significantly and the E-field is stronger near the electrode. In addition, the densities of electrons and ions reduce exponentially but the dusty particle has a critical value. The three particles satisfy the quasi-neutrality condition.
    • 基金项目: ITER配套国内项目(批准号: 2009GB107004)和中央高校基本科研业务费(批准号: ZYGX2010J056)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China ITER Program (Grant No. 2009GB107004), and the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2010J056).
    [1]

    Laifa Boufendi, Andre Bouchoule 2002 Plasma Sources Science and Technology 11 A211

    [2]
    [3]

    Irving Langmuir, Found C G, Dittmer A F 1924 Science 60 392

    [4]

    Roth R M, Spears K G 1985 Appl. Phys. Lett. 46 253

    [5]
    [6]
    [7]

    Selwyn G S 1994 Plasma Source Sci. Technol. 3 340

    [8]
    [9]

    Jellum G M, Graves 1990 Appl. Phys. Lett. 57 2077

    [10]

    Watanabe Y, Shiratani M, Makino H 1990 Appl. Phys. Lett. 57 1616

    [11]
    [12]

    Ma J X 2006 Wuli(Physics) 35 244 (马锦秀 2006 物理 35 244)

    [13]
    [14]
    [15]

    Thomas H, Morfill G E, Demmel V 1994 Phys. Rev. Lett. 73 652

    [16]

    Barkan A, Merlino R L, Dangelo N 1995 Phys. Plasma. 2 3563

    [17]
    [18]

    Vaulina O S, Nefedov A P, Fortov V E F 2001 Cosmic Research 39 347

    [19]
    [20]
    [21]

    Vaulina O S, Petrov O F, Fortov V E 2002 29th EPS Conference on Plasma Phys. and Contr. Fusion Montreux

    [22]

    Liu Y 2007 Ph. D. (Dalian: Dalian University of Technology) (in Chinese) [刘悦 2007 博士学位论文 (大连: 大连理工学)]

    [23]
    [24]
    [25]

    Huang F, Ye M X, Wang L 2006 Science in China G (in Chinese) (in Chinese) [黄峰, 叶茂福, 王龙 2006 中国科学 G辑 36 356

    [26]

    Wu J, Zhang P L, Song Q L 2005 Acta Phys. Sin. 54 4794 (in Chinese) (吴静,张鹏云,宋巧丽 2005 物理学报 54 4794)

    [27]
    [28]
    [29]

    Misawa T, Ohno N, Asano K 2001 Phys. Rev. Lett. 86 1219

    [30]

    Melzer A, Nunomura S, Samsonov D 2000 Phys. Rev. E 62 4162

    [31]
    [32]
    [33]

    Hou L J, Wang Y N, Mikovic Z L 2004 Phys. Rev. E 70 56406

    [34]
    [35]

    Shukla P K 2003 Phys. Plasmas 10 1619

    [36]

    Gu L 1997 Advances In Mechanics 27 56 (in Chinese) [顾琅 1997 力学进展 27 56]

    [37]
    [38]

    Hou L J 2005 Ph. D. (Dalian: Dalian University of Technology) (in Chinese) [侯璐景 2005 博士学位论文 (大连: 大连理工学)]

    [39]
    [40]

    Duan P, Liu J Y 2007 Acta Phys. Sin. 56 7090 (in Chinese) [段萍,刘金远 2007 物理学报 56 7090]

    [41]
    [42]

    Gu Y P, Ma T C 2003 Acta Phys. Sin. 52 1196 (in Chinese) [谷云鹏,马腾才 2003 物理学报 52 1196]

    [43]
    [44]

    Wand Z X, Liu J Y 2004 Acta Phys. Sin. 53 793 (in Chinese) [王正汹,刘金远 2004 物理学报 53 793]

    [45]
    [46]

    Harrison E R, Thompson W B 1959 Proc. Phys. Soc. London. 74 145

    [47]
    [48]
    [49]

    Riemann K U 1995 IEEE Transaction on Plasma Science 23 709

    [50]
    [51]

    Andrews J G, Stangeby P C 1970 Phys. A: Gen. Phys. 3 L39

    [52]
    [53]

    Deutsch R, Rauchle E 1992 Phys. Rev. A 46 3442

    [54]
    [55]

    Valentini H B 1996 Phys. Plamsas 3 4754

    [56]
    [57]

    Gao B, Liu Y 2011 Acta Phys. Sin. 60 045201 (in Chinese) [高碧荣, 刘悦 2011 物理学报 60 045201]

    [58]

    Zhao X Y, Liu J Y, Ni Z X, Duan P 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云,刘金远,段萍,倪志祥 2011 物理学报 60 045205]

    [59]
    [60]

    Wu J, Zhang P Y, Wang D Z 2008 Nuclear Fusion and Plasma Physics 28 40 (in Chinese) [吴静,张鹏云,王德真2008 核聚变与等离子体物理 28 40]

    [61]
    [62]
    [63]

    Li J W, Li Z Y 2004 Chinese J. of Space Science 24 321 (in Chinese) [李嘉巍,李中元 2004 空间科学学报 24 321]

  • [1]

    Laifa Boufendi, Andre Bouchoule 2002 Plasma Sources Science and Technology 11 A211

    [2]
    [3]

    Irving Langmuir, Found C G, Dittmer A F 1924 Science 60 392

    [4]

    Roth R M, Spears K G 1985 Appl. Phys. Lett. 46 253

    [5]
    [6]
    [7]

    Selwyn G S 1994 Plasma Source Sci. Technol. 3 340

    [8]
    [9]

    Jellum G M, Graves 1990 Appl. Phys. Lett. 57 2077

    [10]

    Watanabe Y, Shiratani M, Makino H 1990 Appl. Phys. Lett. 57 1616

    [11]
    [12]

    Ma J X 2006 Wuli(Physics) 35 244 (马锦秀 2006 物理 35 244)

    [13]
    [14]
    [15]

    Thomas H, Morfill G E, Demmel V 1994 Phys. Rev. Lett. 73 652

    [16]

    Barkan A, Merlino R L, Dangelo N 1995 Phys. Plasma. 2 3563

    [17]
    [18]

    Vaulina O S, Nefedov A P, Fortov V E F 2001 Cosmic Research 39 347

    [19]
    [20]
    [21]

    Vaulina O S, Petrov O F, Fortov V E 2002 29th EPS Conference on Plasma Phys. and Contr. Fusion Montreux

    [22]

    Liu Y 2007 Ph. D. (Dalian: Dalian University of Technology) (in Chinese) [刘悦 2007 博士学位论文 (大连: 大连理工学)]

    [23]
    [24]
    [25]

    Huang F, Ye M X, Wang L 2006 Science in China G (in Chinese) (in Chinese) [黄峰, 叶茂福, 王龙 2006 中国科学 G辑 36 356

    [26]

    Wu J, Zhang P L, Song Q L 2005 Acta Phys. Sin. 54 4794 (in Chinese) (吴静,张鹏云,宋巧丽 2005 物理学报 54 4794)

    [27]
    [28]
    [29]

    Misawa T, Ohno N, Asano K 2001 Phys. Rev. Lett. 86 1219

    [30]

    Melzer A, Nunomura S, Samsonov D 2000 Phys. Rev. E 62 4162

    [31]
    [32]
    [33]

    Hou L J, Wang Y N, Mikovic Z L 2004 Phys. Rev. E 70 56406

    [34]
    [35]

    Shukla P K 2003 Phys. Plasmas 10 1619

    [36]

    Gu L 1997 Advances In Mechanics 27 56 (in Chinese) [顾琅 1997 力学进展 27 56]

    [37]
    [38]

    Hou L J 2005 Ph. D. (Dalian: Dalian University of Technology) (in Chinese) [侯璐景 2005 博士学位论文 (大连: 大连理工学)]

    [39]
    [40]

    Duan P, Liu J Y 2007 Acta Phys. Sin. 56 7090 (in Chinese) [段萍,刘金远 2007 物理学报 56 7090]

    [41]
    [42]

    Gu Y P, Ma T C 2003 Acta Phys. Sin. 52 1196 (in Chinese) [谷云鹏,马腾才 2003 物理学报 52 1196]

    [43]
    [44]

    Wand Z X, Liu J Y 2004 Acta Phys. Sin. 53 793 (in Chinese) [王正汹,刘金远 2004 物理学报 53 793]

    [45]
    [46]

    Harrison E R, Thompson W B 1959 Proc. Phys. Soc. London. 74 145

    [47]
    [48]
    [49]

    Riemann K U 1995 IEEE Transaction on Plasma Science 23 709

    [50]
    [51]

    Andrews J G, Stangeby P C 1970 Phys. A: Gen. Phys. 3 L39

    [52]
    [53]

    Deutsch R, Rauchle E 1992 Phys. Rev. A 46 3442

    [54]
    [55]

    Valentini H B 1996 Phys. Plamsas 3 4754

    [56]
    [57]

    Gao B, Liu Y 2011 Acta Phys. Sin. 60 045201 (in Chinese) [高碧荣, 刘悦 2011 物理学报 60 045201]

    [58]

    Zhao X Y, Liu J Y, Ni Z X, Duan P 2011 Acta Phys. Sin. 60 045205 (in Chinese) [赵晓云,刘金远,段萍,倪志祥 2011 物理学报 60 045205]

    [59]
    [60]

    Wu J, Zhang P Y, Wang D Z 2008 Nuclear Fusion and Plasma Physics 28 40 (in Chinese) [吴静,张鹏云,王德真2008 核聚变与等离子体物理 28 40]

    [61]
    [62]
    [63]

    Li J W, Li Z Y 2004 Chinese J. of Space Science 24 321 (in Chinese) [李嘉巍,李中元 2004 空间科学学报 24 321]

计量
  • 文章访问数:  3432
  • PDF下载量:  807
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-28
  • 修回日期:  2012-04-05
  • 刊出日期:  2012-04-05

等离子体鞘层附近尘埃颗粒特性的数值模拟

  • 1. 电子科技大学物理电子学院, 成都 610054;
  • 2. 核工业西南物理研究院聚变所, 成都 610041
    基金项目: ITER配套国内项目(批准号: 2009GB107004)和中央高校基本科研业务费(批准号: ZYGX2010J056)资助的课题.

摘要: 为了研究尘埃等离子体中尘埃颗粒以及鞘层中粒子密度分布等特性,对尘埃颗粒存在条件下等离子体鞘层结构的采取数值模拟.采用稳态无碰撞的尘埃等离子体鞘层模型,对玻姆判据、尘埃颗粒的荷电性质、平板鞘层区域的电势分布及鞘层内粒子分布特性进行了系统的数值模拟研究.计算结果显示,鞘层边缘尘埃颗粒数密度的增加、尘埃温度的升高,将引起孤立尘埃颗粒对电子吸附能力的减弱,集体效应也受到一定程度的影响;二者同时对离子玻姆速度以及鞘层厚度的增加都有着极大的促进作用.鞘层电势在靠近下极区处降落迅速,主要聚集在接近阴极极板的鞘层区域,各种微粒数密度的空间分布满足准中性条件.

English Abstract

参考文献 (63)

目录

    /

    返回文章
    返回