搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究

徐大庆 赵子涵 李培咸 王超 张岩 刘树林 童军

引用本文:
Citation:

不同价态Mn掺杂InN电子结构、磁学和光学性质的第一性原理研究

徐大庆, 赵子涵, 李培咸, 王超, 张岩, 刘树林, 童军

First-principle study on electronic structures, magnetic, and optical properties of different valence Mn ions doped InN

Xu Da-Qing, Zhao Zi-Han, Li Pei-Xian, Wang Chao, Zhang Yan, Liu Shu-Lin, Tong Jun
PDF
导出引用
  • 采用密度泛函理论体系下的广义梯度近似GGA+U平面波超软赝势方法,在构建了纤锌矿结构的InN超胞及三种不同有序占位Mn2+,Mn3+价态分别掺杂InN超胞模型,并进行几何优化的基础上,计算了掺杂前后体系的电子结构、能量以及光学性质.计算结果表明:Mn掺杂后体系总能量和形成能降低,稳定性增加,并在费米能级附近引入自旋极化杂质带,体系具有明显的自旋极化现象.掺杂不同价态的Mn元素对体系电子结构和磁学性质产生了不同的影响.电子结构和磁性分析表明掺杂体系的磁性来源于p-d交换机制和双交换机制的共同作用,Mn3+价态掺杂有利于掺杂体系的居里温度达到室温以上.与未掺杂InN相比,不同价态Mn元素掺杂后体系的静态介电函数显著增大,掺杂体系介电函数虚部和吸收光谱在低能区域出现了较强的新峰,分析认为这些新峰主要来自与费米能级附近自旋极化杂质带相关的跃迁.
    InN,as an important Ⅲ-nitride,has high electron mobility and low electron effective mass,so it has a wide range of applications in optoelectronic devices,high-frequency high-speed devices,and high-power microwave devices.The Ⅲ-nitrides based dilute magnetic semiconductors (DMSs) can be developed by leveraging the existing fabrication technology for Ⅲ-nitride semiconductor electronic devices,leading to novel semiconductor spintronic devices with a multiplicity of electrical,optical,and magnetic properties.It has been reported that room temperature ferromagnetism exists in InN nanostructures and thin films as well as InN-based DMSs systems.However,the origin mechanism and the formation mechanism of ferromagnetism in these materials have not been fully understood.In Ⅲ-V compound semiconductors,the transition element Mn ions exist mostly in the form of Mn2+ valences while it is also possible for them to emerge in Mn3+ valence states under certain conditions.Although Mn2+ and Mn3+ valance states affect the physical properties of the doped semiconductor differently,there lacks in-depth understanding of such different effects resulting from Mn doping in InN. Under the framework of the density functional theory,in this paper we adopt the generalized gradient approximation (GGA+U) plane wave pseudopotential method to calculate the electronic structure,energy and optical properties of undoped InN and InN doped with three different orderly placeholders of Mn2+ or Mn3+ after geometry optimization.The conducted analysis shows that the system exhibits lower total and formation energies,and improved stability after Mn doping.Manganese doping introduces a spin-polarized impurity band near the Fermi level,and as a result the doped material system has obvious spin polarization.Doping with different valences of Mn ions lead to varying effects on the electronic structure and magnetic property of the material system.The analyses of electronic structure and magnetic property show that both the p-d exchange mechanism and the double exchange mechanism play important roles in the magnetic exchange of the doped system,and Mn3+ doping helps to push the Curie temperature above the room temperature.Comparing with the pure InN,the value of the static dielectric function of the doped system increases significantly.The present analysis concludes that the imaginary part of the dielectric function and the absorption spectrum of the doped system presents strong new peaks in the low-energy region due to the electronic transition associated with the spin-polarized impurity band near the Fermi level. Broadly,this work sheds new light on the microscopic mechanism for the magnetic ordering of Ⅲ-nitride based DMSs,and lays a foundation for developing the novel Ⅲ-nitride based DMSs and devices.
      通信作者: 徐大庆, xustxdq@163.com
    • 基金项目: 陕西省教育厅专项科研计划(批准号:11JK0912)、西安科技大学科研培育基金(批准号:201611)和国家重点研发计划(批准号:2016YFB0400802)资助的课题.
      Corresponding author: Xu Da-Qing, xustxdq@163.com
    • Funds: Project supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 11JK0912), the Scientific Research Foundation of Xi'an University of Science and Technology, China (Grant No. 201611), and the National Key Research and Development Program of China (Grant No. 2016YFB0400802).
    [1]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [2]

    Roul B, Kumar M, Bhat T N, Rajpalke M K, Krupanidhi S B, Kumar N, Sundaresan A 2014 J. Nanosci. Nanotechnol. 4 1

    [3]

    Meng X Q, Chen Z H, Chen Z, Wu F M, Li S S, Li J B, Wu J Q, Wei S H 2013 Appl. Phys. Lett. 103 253102

    [4]

    Ren M, Li M, Zhang C, Yuan M, Li P, Li F, Ji W, Liu X 2015 Physica E 67 1

    [5]

    Caliskan S, Hazar F 2015 Superlattices Microstruct. 84 170

    [6]

    Zhang K C, Li Y F, Liu Y, Zhu Y 2015 J. Alloys Compd. 625 101

    [7]

    Fan S W, Huang X N, Yao K L 2017 J. Appl. Phys. 121 073905

    [8]

    Chang P H, Chen H C, Lin J W, Lai M X, Hung S Y, Lee M J 2016 Thin Solid Films 618 184

    [9]

    Alsaad A, Qattan I A 2014 Physica B 432 77

    [10]

    Chen P P, Makino H, Yao T 2004 Physica E 21 983

    [11]

    Wolos A, Palczewska M, Zajac M, Gosk J, Kaminska M, Twardowski A, Bockowski M, Grzegory I, Porowski S 2004 Phys. Rev. B 69 115210

    [12]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M 2003 Phys. Rev. B 67 165215

    [13]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M, Grgens L, Philipp J B, Ambacher O 2003 J. Appl. Phys. 93 9697

    [14]

    Dalpian G M, Wei S H 2005 J. Appl. Phys. 98 1019

    [15]

    Stefanowicz W, Sztenkiel D, Faina B, et al. 2010 Phys. Rev. B 81 1601

    [16]

    Zakrzewski T, Boguslawski P 2016 J. Alloys Compd. 664 565

    [17]

    Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York:John Wiley Sons, Inc) pp49-66

    [18]

    Alsaad A, Qattan I A 2011 Physica B 406 4233

    [19]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Katayama-Yoshida H, Sato K 2003 J. Phys. Chem. Solids 64 1447

    [22]

    Monemar B, Paskova P P, Kasic A 2005 Superlattices Microsturct. 38 38

    [23]

    Briot O, Maleyre B, Ruffenach S, Gil B, Pinquier C, Demangeot F, Frandon J 2004 J. Cryst. Growth 269 22

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Sato K, Katayama-Yoshida H 2012 J. Non-Cryst. Solids 358 2377

    [26]

    Xu D Q, Li P X, Zhang Y M, Lou Y L, Li Y C 2016 Thin Solid Films 616 573

    [27]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [28]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

    [29]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1

    [30]

    Graf T, Gjukic M, Brandt M S, Stutzmann M, Ambacher O 2002 Appl. Phys. Lett. 81 5159

    [31]

    Titov A, Biquard X, Halley D, Kuroda S, Bellet-Amalric E, Mariette H, Cibert J, Merad A E, Merad G, Kanoun M B, Kulatov E, Uspenskii Y A 2005 Phys. Rev. B 72 115209

  • [1]

    Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187

    [2]

    Roul B, Kumar M, Bhat T N, Rajpalke M K, Krupanidhi S B, Kumar N, Sundaresan A 2014 J. Nanosci. Nanotechnol. 4 1

    [3]

    Meng X Q, Chen Z H, Chen Z, Wu F M, Li S S, Li J B, Wu J Q, Wei S H 2013 Appl. Phys. Lett. 103 253102

    [4]

    Ren M, Li M, Zhang C, Yuan M, Li P, Li F, Ji W, Liu X 2015 Physica E 67 1

    [5]

    Caliskan S, Hazar F 2015 Superlattices Microstruct. 84 170

    [6]

    Zhang K C, Li Y F, Liu Y, Zhu Y 2015 J. Alloys Compd. 625 101

    [7]

    Fan S W, Huang X N, Yao K L 2017 J. Appl. Phys. 121 073905

    [8]

    Chang P H, Chen H C, Lin J W, Lai M X, Hung S Y, Lee M J 2016 Thin Solid Films 618 184

    [9]

    Alsaad A, Qattan I A 2014 Physica B 432 77

    [10]

    Chen P P, Makino H, Yao T 2004 Physica E 21 983

    [11]

    Wolos A, Palczewska M, Zajac M, Gosk J, Kaminska M, Twardowski A, Bockowski M, Grzegory I, Porowski S 2004 Phys. Rev. B 69 115210

    [12]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M 2003 Phys. Rev. B 67 165215

    [13]

    Graf T, Gjukic M, Hermann M, Brandt M S, Stutzmann M, Grgens L, Philipp J B, Ambacher O 2003 J. Appl. Phys. 93 9697

    [14]

    Dalpian G M, Wei S H 2005 J. Appl. Phys. 98 1019

    [15]

    Stefanowicz W, Sztenkiel D, Faina B, et al. 2010 Phys. Rev. B 81 1601

    [16]

    Zakrzewski T, Boguslawski P 2016 J. Alloys Compd. 664 565

    [17]

    Zubrilov A 2001 Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (New York:John Wiley Sons, Inc) pp49-66

    [18]

    Alsaad A, Qattan I A 2011 Physica B 406 4233

    [19]

    Kunert G, Dobkowska S, Li T, Reuther H, Kruse C, Figge S, Jakiela R, Bonanni A, Grenzer J, Stefanowicz W, Borany J, Sawicki M, Dietl T, Hommel D 2012 Appl. Phys. Lett. 101 022413

    [20]

    Cui X Y, Medvedeva J E, Delley B, Freeman A J, Newman N, Stampfl C 2005 Phys. Rev. Lett. 95 256404

    [21]

    Katayama-Yoshida H, Sato K 2003 J. Phys. Chem. Solids 64 1447

    [22]

    Monemar B, Paskova P P, Kasic A 2005 Superlattices Microsturct. 38 38

    [23]

    Briot O, Maleyre B, Ruffenach S, Gil B, Pinquier C, Demangeot F, Frandon J 2004 J. Cryst. Growth 269 22

    [24]

    Sato K, Bergqvist L, Kudrnovsky J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H, Zeller R 2010 Rev. Mod. Phys. 82 1633

    [25]

    Sato K, Katayama-Yoshida H 2012 J. Non-Cryst. Solids 358 2377

    [26]

    Xu D Q, Li P X, Zhang Y M, Lou Y L, Li Y C 2016 Thin Solid Films 616 573

    [27]

    Gopal P, Spaldin N A 2006 Phys. Rev. B 74 094418

    [28]

    Sun J, Wang H T, He J L, Tian Y J 2005 Phys. Rev. B 71 125132

    [29]

    Sahin S, Ciftci Y O, Colakoglu K, Korozlu N 2012 J. Alloys Compd. 529 1

    [30]

    Graf T, Gjukic M, Brandt M S, Stutzmann M, Ambacher O 2002 Appl. Phys. Lett. 81 5159

    [31]

    Titov A, Biquard X, Halley D, Kuroda S, Bellet-Amalric E, Mariette H, Cibert J, Merad A E, Merad G, Kanoun M B, Kulatov E, Uspenskii Y A 2005 Phys. Rev. B 72 115209

  • [1] 叶建峰, 秦铭哲, 肖清泉, 王傲霜, 何安娜, 谢泉. Ti, V, Co, Ni掺杂二维CrSi2材料的电学、磁学及光学性质的第一性原理研究. 物理学报, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [2] 张丽丽, 夏桐, 刘桂安, 雷博程, 赵旭才, 王少霞, 黄以能. 第一性原理方法研究N-Pr共掺杂ZnO的电子结构和光学性质. 物理学报, 2019, 68(1): 017401. doi: 10.7498/aps.68.20181531
    [3] 潘凤春, 林雪玲, 曹志杰, 李小伏. Fe, Co, Ni掺杂GaSb的电子结构和光学性质. 物理学报, 2019, 68(18): 184202. doi: 10.7498/aps.68.20190290
    [4] 王冠仕, 林彦明, 赵亚丽, 姜振益, 张晓东. (Cu,N)共掺杂TiO2/MoS2异质结的电子和光学性能:杂化泛函HSE06. 物理学报, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [5] 程丽, 王德兴, 张杨, 苏丽萍, 陈淑妍, 王晓峰, 孙鹏, 易重桂. Cu,O共掺杂AlN晶体电子结构与光学性质研究. 物理学报, 2018, 67(4): 047101. doi: 10.7498/aps.67.20172096
    [6] 赵佰强, 张耘, 邱晓燕, 王学维. Cu,Fe掺杂LiNbO3晶体电子结构和光学性质的第一性原理研究. 物理学报, 2016, 65(1): 014212. doi: 10.7498/aps.65.014212
    [7] 余志强, 张昌华, 郎建勋. P掺杂硅纳米管电子结构与光学性质的研究. 物理学报, 2014, 63(6): 067102. doi: 10.7498/aps.63.067102
    [8] 李倩倩, 郝秋艳, 李英, 刘国栋. 稀土元素(Ce, Pr)掺杂GaN的电子结构和光学性质的理论研究. 物理学报, 2013, 62(1): 017103. doi: 10.7498/aps.62.017103
    [9] 刘玮洁, 孙正昊, 黄宇欣, 冷静, 崔海宁. 不同价态稀土元素Yb掺杂ZnO的电子结构和光学性质. 物理学报, 2013, 62(12): 127101. doi: 10.7498/aps.62.127101
    [10] 王寅, 冯庆, 王渭华, 岳远霞. 碳-锌共掺杂锐钛矿相TiO2 电子结构与光学性质的第一性原理研究. 物理学报, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [11] 张小超, 赵丽军, 樊彩梅, 梁镇海, 韩培德. 过渡金属(Fe,Co,Ni,Zn)掺杂金红石TiO2的电子结构和光学性质. 物理学报, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [12] 李春霞, 党随虎. Ag, Zn掺杂对CdS电子结构和光学性质的影响. 物理学报, 2012, 61(1): 017202. doi: 10.7498/aps.61.017202
    [13] 王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生. 不同浓度Er掺杂Si纳米晶粒电子结构和光学性质的第一性原理研究. 物理学报, 2011, 60(12): 127302. doi: 10.7498/aps.60.127302
    [14] 于峰, 王培吉, 张昌文. N掺杂SnO2材料光电性质的第一性原理研究. 物理学报, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [15] 梁伟华, 丁学成, 褚立志, 邓泽超, 郭建新, 吴转花, 王英龙. 镍掺杂硅纳米线电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(11): 8071-8077. doi: 10.7498/aps.59.8071
    [16] 郭建云, 郑 广, 何开华, 陈敬中. Al,Mg掺杂GaN电子结构及光学性质的第一性原理研究. 物理学报, 2008, 57(6): 3740-3746. doi: 10.7498/aps.57.3740
    [17] 毕艳军, 郭志友, 孙慧卿, 林 竹, 董玉成. Co和Mn共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2008, 57(12): 7800-7805. doi: 10.7498/aps.57.7800
    [18] 段满益, 徐 明, 周海平, 陈青云, 胡志刚, 董成军. 碳掺杂ZnO的电子结构和光学性质. 物理学报, 2008, 57(10): 6520-6525. doi: 10.7498/aps.57.6520
    [19] 邢海英, 范广涵, 赵德刚, 何 苗, 章 勇, 周天明. Mn掺杂GaN电子结构和光学性质研究. 物理学报, 2008, 57(10): 6513-6519. doi: 10.7498/aps.57.6513
    [20] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
计量
  • 文章访问数:  7509
  • PDF下载量:  320
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-22
  • 修回日期:  2018-01-19
  • 刊出日期:  2019-04-20

/

返回文章
返回