搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

随机激励下Frenkel-Kontorova模型的纳米摩擦现象

李毅伟 雷佑铭 杨勇歌

引用本文:
Citation:

随机激励下Frenkel-Kontorova模型的纳米摩擦现象

李毅伟, 雷佑铭, 杨勇歌

Nano-friction phenomena in driven Frenkel-Kontorova model with stochastic excitation

Li Yi-Wei, Lei You-Ming, Yang Yong-Ge
PDF
HTML
导出引用
  • 基于一维Frenkel-Kontorova (FK)模型, 借助随机龙格库塔方法, 在非公度(incommensurate)和公度(commensurate)两种情形下, 分别研究了高斯白噪声激励下, 随机FK模型的纳米摩擦现象(滞回和超滑)随噪声强度的变化而变化的规律. 两种情形表明随着噪声强度的增大, 对减小系统滞回, 产生超滑有积极的影响. 另一方面, 当系统机动性能(chain mobility)未达到饱和状态(B = 1)时, 噪声的引入, 能加速原子的运动, 使得原子更易脱离基底势的束缚而做运动, 但是当系统达到饱和状态后, 系统机动性能并不受噪声的影响. 另外, 两种情形的区别是, 公度情形下, 由于原子受到基底势更强烈的耦合作用, 所以噪声对公度情形影响更为明显.
    In this paper, the effects of a Gaussian white noise excitation on the one-dimensional Frenkel-Kontorova (FK) model are studied by the stochastic Runge-Kutta method under two different types of substrate cases, i.e. incommensurate case and commensurate case. The noise excitation is considered through the inclusion of a stochastic force via a Langevin molecular dynamics approach, and we uncover the mechanism of nano-friction phenomenon in the FK model driven by the stochastic force. The relationship between the noise intensity and the nano-friction phenomenon, such as hysteresis, maximum static friction force, and the super-lubricity, is investigated by using the stochastic Runge-Kutta algorithm. It is shown that with the increase of noise intensity, the area of the hysteresis becomes smaller and the maximum static friction force tends to decrease, which can promote the generation of super-lubricity. Similar results are obtained from the two cases, in which the ratios of the atomic distance to the period of the substrate potential field are incommensurate and commensurate, respectively. In particular, a suitable noise density gives rise to super-lubricity where the maximum static friction force vanishes. Hence, the noise excitation in this sense is beneficial to the decrease of the hysteresis and the maximum static friction force. Meanwhile, with the appropriate external driving force, the introduction of a noise excitation can accelerate the motion of the system, making the atoms escape from the substrate potential well more easily. But when the chain mobility reaches a saturation state (B = 1), it is no longer affected by the stochastic excitation. Furthermore, the difference between the two circumstances lies in the fact that for the commensurate interface, the influence of the noise is much stronger and more beneficial to triggering the motion of the FK model than for the incommensurate interface since the atoms in the former case are coupled and entrapped more strongly by the substrate potential.
      通信作者: 李毅伟, math_ywl@sxau.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11902081)、山西省高等学校科技创新基金(批准号: 2020L0172)和山西农业大学青年科技创新基金(批准号: 2020QC04)资助的课题
      Corresponding author: Li Yi-Wei, math_ywl@sxau.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11902081), the Science and Technology Innovation Foundation of Higher Education Institutions of Shanxi Province, China (Grant No. 2020L0172), and the Science and Technology Innovation Foundation for Young Scientists of Shanxi Agricultural University, China (Grant No. 2020QC04)
    [1]

    温诗铸 2007 机械工程学报 43 1Google Scholar

    Wen S Z 2007 Chin. J. Mech. Eng. 43 1Google Scholar

    [2]

    Braun O M, Kivshar Y S 2004 The Frenkel-Kontorova model: Concepts, Methods, and Applications (Berlin: Springer) pp2−20

    [3]

    Wolfgang Q, Josep M B 2019 Eur. Phys. J. B 92 1Google Scholar

    [4]

    Lei Y M, Zheng F, Shao X Z 2017 Int. J. Bifurcation Chaos 27 1750052Google Scholar

    [5]

    Zhang Z J, Tang C M, Tong P Q 2016 Phys. Rev. E 93 022216Google Scholar

    [6]

    Vanossi A, Benassi A, Varini N, Tosatti E 2013 Phys. Rev. B 87 045412Google Scholar

    [7]

    Zhang J Q, Nie L R, Zhang X Y, Chen R Y 2014 Eur. Phys. J. B 87 1Google Scholar

    [8]

    雷佑铭, 李毅伟, 赵云平 2014 物理学报 63 220502Google Scholar

    LeiY M, Li Y W, Zhao Y P 2014 Acta Phys. Sin. 63 220502Google Scholar

    [9]

    Yung K L, Lei Y M, Xu Y 2010 Chin. Phys. B 19 010503Google Scholar

    [10]

    杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏 2012 物理学报 61 130501Google Scholar

    Yang Y, Wang C L, Duan W S, Shi Y R, Chen J M 2012 Acta Phys. Sin. 61 130501Google Scholar

    [11]

    Yang Y, Duan W S, Yang L, Chen J M, Lin M M 2011 Europhys. Lett. 93 16001Google Scholar

    [12]

    Vanossi A, Santoro G, Bortolani V 2004 J. Phys. Condens. Matter 16 2895Google Scholar

    [13]

    Braun O M, Bishop A, Röder J 1997 Phys. Rev. Lett 79 3692Google Scholar

    [14]

    Vanossi A, Röder J, Bishop A, Bortolani V 2003 Phys. Rev. E 67 016605Google Scholar

    [15]

    Tekić J, Hu B 2008 Phys. Rev. B 78 104305Google Scholar

    [16]

    Tekić J, He D, Hu B 2009 Phys. Rev. E 79 036604Google Scholar

    [17]

    Tekić J, Hu B 2010 Phys. Rev. E 81 036604Google Scholar

    [18]

    Hu B, Tekić J 2007 Phys. Rev. E 75 056608Google Scholar

    [19]

    Capozza R, Vanossi A, Vezzani A, Zapperi S 2012 Tribol. Lett. 48 95Google Scholar

    [20]

    Braun O M, Zhang H, Hu B, Tekić J 2003 Phys. Rev. E 67 066602Google Scholar

    [21]

    Capozza R, Vanossi A, Vezzani A, Zapperi S 2009 Phys. Rev. Lett. 103 085502Google Scholar

    [22]

    Lin M M, Duan W S, Chen J M 2010 Chin. Phys. B 19 026201Google Scholar

    [23]

    Vanossi A, Braun O M 2007 J. Phys. Condens. Matter 19 305017Google Scholar

    [24]

    Guerra R, Vanossi A, Ferrario M 2007 Surf. Sci. 601 3676Google Scholar

    [25]

    Braun O M, Dauxois T, Paliy M V, Peyrard M 1997 Phys. Rev. E 55 3598Google Scholar

    [26]

    李晓礼, 刘锋, 林麦麦, 陈建敏, 段文山 2010 物理学报 59 2589Google Scholar

    Li X L, Liu F, Lin M M, Chen J M, Duan W S 2010 Acta Phys. Sin. 59 2589Google Scholar

    [27]

    秦文新 2017 中国科学: 数学 47 1853Google Scholar

    Qin W X 2017 Sci. Sin. Math. 47 1853Google Scholar

    [28]

    Honeycutt R 1992 Phys. Rev. A 45 600Google Scholar

    [29]

    许爱国, 王光瑞, 陈式刚, 杨展如 1999 物理学进展 19 109Google Scholar

    Xu A G, Wang G R, Chen S G, Yang Z R 1999 Prog. Phys. 19 109Google Scholar

  • 图 1  D = 0, 0.005, 0.010时, 非公度情形下系统机动性能B随外力F的改变的变化规律(图中三角形和原点分别表示外力F绝热增加和减小的过程)

    Fig. 1.  Noise effects on static friction and hysteresis of the $B(F)$ characteristics for the incommensurate case when D = 0, 0.005, 0.010. Triangles and circles denote, respectively, the adiabatic increasing and decreasing process of F.

    图 2  D = 0.1, 0.2, 0.5时, 非公度情形下系统机动性能B随外力F的改变的变化规律

    Fig. 2.  Noise effects on static friction and hysteresis of the $B(F)$ characteristics for the incommensurate case when D = 0.1, 0.2, 0.5.

    图 3  非公度情形下最大静摩擦力${F_{\rm{s}}}$随噪声强度D的改变的变化规律

    Fig. 3.  Noise effects on maximum static friction for the incommensurate case.

    图 4  D = 0, 0.005, 0.010时, 公度情形下系统机动性能B随外力F的改变的变化规律(图中三角形和原点分别表示外力F绝热增加和减小的过程)

    Fig. 4.  Noise effects on static friction and hysteresis of the $B(F)$ characteristics for the commensurate case when D = 0, 0.005, 0.010. Triangles and circles denote, respectively, the adiabatic increasing and decreasing process of F.

    图 5  D = 0.1, 0.2, 0.5时公度情形下系统机动性能B随外力F的改变的变化规律

    Fig. 5.  Noise effects on static friction and hysteresis of the $B(F)$ characteristics for the commensurate case when D = 0.1, 0.2, 0.5.

    图 6  公度与非公度情形下最大静摩擦力${F_{\rm{s}}}$随噪声强度D的改变的变化规律

    Fig. 6.  Noise effects on maximum static friction for the incommensurate case (blue) and the commensurate case (red)

  • [1]

    温诗铸 2007 机械工程学报 43 1Google Scholar

    Wen S Z 2007 Chin. J. Mech. Eng. 43 1Google Scholar

    [2]

    Braun O M, Kivshar Y S 2004 The Frenkel-Kontorova model: Concepts, Methods, and Applications (Berlin: Springer) pp2−20

    [3]

    Wolfgang Q, Josep M B 2019 Eur. Phys. J. B 92 1Google Scholar

    [4]

    Lei Y M, Zheng F, Shao X Z 2017 Int. J. Bifurcation Chaos 27 1750052Google Scholar

    [5]

    Zhang Z J, Tang C M, Tong P Q 2016 Phys. Rev. E 93 022216Google Scholar

    [6]

    Vanossi A, Benassi A, Varini N, Tosatti E 2013 Phys. Rev. B 87 045412Google Scholar

    [7]

    Zhang J Q, Nie L R, Zhang X Y, Chen R Y 2014 Eur. Phys. J. B 87 1Google Scholar

    [8]

    雷佑铭, 李毅伟, 赵云平 2014 物理学报 63 220502Google Scholar

    LeiY M, Li Y W, Zhao Y P 2014 Acta Phys. Sin. 63 220502Google Scholar

    [9]

    Yung K L, Lei Y M, Xu Y 2010 Chin. Phys. B 19 010503Google Scholar

    [10]

    杨阳, 王苍龙, 段文山, 石玉仁, 陈建敏 2012 物理学报 61 130501Google Scholar

    Yang Y, Wang C L, Duan W S, Shi Y R, Chen J M 2012 Acta Phys. Sin. 61 130501Google Scholar

    [11]

    Yang Y, Duan W S, Yang L, Chen J M, Lin M M 2011 Europhys. Lett. 93 16001Google Scholar

    [12]

    Vanossi A, Santoro G, Bortolani V 2004 J. Phys. Condens. Matter 16 2895Google Scholar

    [13]

    Braun O M, Bishop A, Röder J 1997 Phys. Rev. Lett 79 3692Google Scholar

    [14]

    Vanossi A, Röder J, Bishop A, Bortolani V 2003 Phys. Rev. E 67 016605Google Scholar

    [15]

    Tekić J, Hu B 2008 Phys. Rev. B 78 104305Google Scholar

    [16]

    Tekić J, He D, Hu B 2009 Phys. Rev. E 79 036604Google Scholar

    [17]

    Tekić J, Hu B 2010 Phys. Rev. E 81 036604Google Scholar

    [18]

    Hu B, Tekić J 2007 Phys. Rev. E 75 056608Google Scholar

    [19]

    Capozza R, Vanossi A, Vezzani A, Zapperi S 2012 Tribol. Lett. 48 95Google Scholar

    [20]

    Braun O M, Zhang H, Hu B, Tekić J 2003 Phys. Rev. E 67 066602Google Scholar

    [21]

    Capozza R, Vanossi A, Vezzani A, Zapperi S 2009 Phys. Rev. Lett. 103 085502Google Scholar

    [22]

    Lin M M, Duan W S, Chen J M 2010 Chin. Phys. B 19 026201Google Scholar

    [23]

    Vanossi A, Braun O M 2007 J. Phys. Condens. Matter 19 305017Google Scholar

    [24]

    Guerra R, Vanossi A, Ferrario M 2007 Surf. Sci. 601 3676Google Scholar

    [25]

    Braun O M, Dauxois T, Paliy M V, Peyrard M 1997 Phys. Rev. E 55 3598Google Scholar

    [26]

    李晓礼, 刘锋, 林麦麦, 陈建敏, 段文山 2010 物理学报 59 2589Google Scholar

    Li X L, Liu F, Lin M M, Chen J M, Duan W S 2010 Acta Phys. Sin. 59 2589Google Scholar

    [27]

    秦文新 2017 中国科学: 数学 47 1853Google Scholar

    Qin W X 2017 Sci. Sin. Math. 47 1853Google Scholar

    [28]

    Honeycutt R 1992 Phys. Rev. A 45 600Google Scholar

    [29]

    许爱国, 王光瑞, 陈式刚, 杨展如 1999 物理学进展 19 109Google Scholar

    Xu A G, Wang G R, Chen S G, Yang Z R 1999 Prog. Phys. 19 109Google Scholar

  • [1] 闫洪波, 黄海涛, 汪建新, 黄健, 谢凯. 超磁致伸缩材料在不同外部条件下的磁滞模型预测. 物理学报, 2024, 73(22): 228501. doi: 10.7498/aps.73.20241219
    [2] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [3] 严柏平, 张成明, 李立毅, 吕福在, 邓双. Tb0.3Dy0.7Fe2合金磁畴偏转的滞回特性研究. 物理学报, 2016, 65(6): 067501. doi: 10.7498/aps.65.067501
    [4] 吴学礼, 刘杰, 张建华, 王英. 基于不确定性变时滞分数阶超混沌系统的滑模自适应鲁棒的同步控制. 物理学报, 2014, 63(16): 160507. doi: 10.7498/aps.63.160507
    [5] 杨波, 卜雄洙, 王新征, 于靖. 高斯噪声和弱正弦信号驱动的时间差型磁通门传感器. 物理学报, 2014, 63(20): 200702. doi: 10.7498/aps.63.200702
    [6] 雷佑铭, 李毅伟, 赵云平. Frenkel-Kontorova模型中基底势振动的影响. 物理学报, 2014, 63(22): 220502. doi: 10.7498/aps.63.220502
    [7] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象. 物理学报, 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [8] 何亮, 杜磊, 黄晓君, 陈华, 陈文豪, 孙鹏, 韩亮. 金属互连电迁移噪声的非高斯性模型研究. 物理学报, 2012, 61(20): 206601. doi: 10.7498/aps.61.206601
    [9] 李玉叶, 贾冰, 古华光. 白噪声诱发Morris-Lecar模型构成的Ⅱ型兴奋网络产生多次空间相干共振. 物理学报, 2012, 61(7): 070504. doi: 10.7498/aps.61.070504
    [10] 谢文贤, 蔡力, 岳晓乐, 雷佑铭, 徐伟. 两种群随机动力系统的信息熵和动力学研究. 物理学报, 2012, 61(17): 170509. doi: 10.7498/aps.61.170509
    [11] 韩秀琴, 姜虹, 石玉仁, 刘妍秀, 孙建华, 陈建敏, 段文山. 一维 Frenkel-Kontorova(FK)模型原子链的相变研究. 物理学报, 2011, 60(11): 116801. doi: 10.7498/aps.60.116801
    [12] 张茂平, 钟伟荣, 艾保全. 非对称双链分子结构的热整流效应. 物理学报, 2011, 60(6): 060511. doi: 10.7498/aps.60.060511
    [13] 王军, 李京颍, 郑志刚. 热整流效应的消失与翻转现象. 物理学报, 2010, 59(1): 476-481. doi: 10.7498/aps.59.476
    [14] 汪茂胜, 黄万霞, 崔执凤. 二维映射神经元模型中的相干双共振. 物理学报, 2010, 59(7): 4485-4489. doi: 10.7498/aps.59.4485
    [15] 李晓礼, 刘锋, 林麦麦, 陈建敏, 段文山. Frenkel-Kontorova模型中垫底势对最大静摩擦力的影响. 物理学报, 2010, 59(4): 2589-2594. doi: 10.7498/aps.59.2589
    [16] 汪茂胜. 二维映射神经元模型中频率依赖的随机共振. 物理学报, 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
    [17] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究. 物理学报, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [18] 宋 杨, 赵同军, 刘金伟, 王向群, 展 永. 高斯白噪声对神经元二维映射模型动力学的影响. 物理学报, 2006, 55(8): 4020-4025. doi: 10.7498/aps.55.4020
    [19] 王龙海, 于 军, 王耘波, 彭 刚, 刘 锋, 高峻雄. 基于静态电滞回线的铁电电容模型. 物理学报, 2005, 54(2): 949-954. doi: 10.7498/aps.54.949
    [20] 陈绍英, 许海波, 王光瑞, 陈式刚. 耦合哈密顿系统中测度同步的研究. 物理学报, 2004, 53(12): 4098-4110. doi: 10.7498/aps.53.4098
计量
  • 文章访问数:  4962
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2020-12-07
  • 上网日期:  2021-04-16
  • 刊出日期:  2021-05-05

/

返回文章
返回