搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强电负性配体诱导CsPbBr3纳米晶蓝光出射

刘小冰 郭若彤 仲雨璇 赵丽新 史昊男 刘丽娟

引用本文:
Citation:

强电负性配体诱导CsPbBr3纳米晶蓝光出射

刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟

Ligand with strong electronegativity induced blue emitting of CsPbBr3 nanocrystals

Liu Xiao-Bing, Guo Ruo-Tong, Zhong Yu-Xuan, Zhao Li-Xin, Shi Hao-Nan, Liu Li-Juan
PDF
HTML
导出引用
  • 全无机钙钛矿纳米晶因其出色的光学性能(量子产率高、发射带宽窄、吸收截面大等)与简单便利的制备过程等特点受到了各国研究人员的极大关注. 目前, 制备的无机钙钛矿纳米晶主要集中在绿光和红光波段, 蓝光无机钙钛矿纳米晶研究较少, 且存在荧光量子效率低、稳定性差的问题, 限制了其应用范围. 选用强电负性2-丙烯酰胺-2-甲基丙磺酸作为配体, 采用热注入法制备无机钙钛矿纳米晶CsPbBr3, 纳米晶呈片状, 尺寸均一, 结晶度好, 荧光峰位于462 nm, 半高宽为20 nm, 荧光量子产率可达80%. 通过测量CsPbBr3纳米晶的时间分辨光致发光谱和瞬态吸收谱, 研究了CsPbBr3纳米晶产生蓝光的物理机理. 该研究丰富了配体对于纳米晶相互作用的研究内容, 极大地促进了无机钙钛矿纳米晶在光学器件中的应用.
    All-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs) are promising candidates for the next-generation luminescent materials due to their fascinating physic-optical properties, such as size-tunable optical band gaps, high luminescent quantum yields, and narrow emissive bandwidths. At present, the prepared CsPbX3 NCs are concentrated in the range of green and red. The research of blue CsPbX3 NCs is lacking and these CsPbX3 NCs still suffer problems of low quantum efficiency and poor stability, which limit their application areas. In this paper, 2-acrylamide-2-methyl-propionic sulfonic acid (AMPS) with strong electronegativity is used to prepare CsPbX3 NCs by the thermal injection method. All CsPbBr3 NCs each have a uniform size, good crystallization, and nanoplate morphology. The CsPbBr3 NCs each exhibit an optical absorption at 450 nm and a photoluminescence (PL) emission at 462 nm with a full width of half maximum of 20 nm. To further investigate the physical mechanism of the PL shift and explore the effect of AMPS on the transient dynamics of the photocarriers in CsPbBr3 NCs, we measure the time-resolved PL spectrum and transient absorption spectrum. It can be found that the CsPbBr3 NCs have only one lifetime of 222 ns, which is one order of magnitude longer than that of the CsPbBr3 NCs without AMPS. Meanwhile, there is no obvious transient absorption signal. Based on the above experimental results, this blue shift is caused by three reasons. Firstly, AMPS has a strong attraction to the excited electrons, which causes the electrons in the excited state to stay for a long time before returning to the ground state. Because of the relaxation behavior before the radiation transition, the energy released by the radiation transition is larger and the fluorescence wavelength is shorter. Secondly, the prepared CsPbBr3 NCs have stronger quantum confinement than CsPbBr3 NCs with cubic block morphology. Finally, AMPS can passivate the surface defects of CsPbBr3 NCs more effectively. The prepared CsPbBr3 NCs have less defects, which also causes the PL to be blue-shifted. This study provides not only a method of synthsizing the CsPbBr3 NCs with blue emitting but also an insight into the surface engineering or physical functionalization of inorganic perovskite NCs.
      通信作者: 刘丽娟, llj2007weihai@163.com
    • 基金项目: 国家级-大学生创新创业训练计划项目(201910446006)
      Corresponding author: Liu Li-Juan, llj2007weihai@163.com
    [1]

    Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar

    [2]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [3]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [4]

    Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar

    [5]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [6]

    Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar

    [7]

    Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [8]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [9]

    Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar

    [10]

    Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [11]

    Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [12]

    Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar

    [13]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar

    [14]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [15]

    Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [16]

    Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar

    [17]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar

    [18]

    Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar

    [19]

    Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar

    [20]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [21]

    Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [22]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar

    [23]

    Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar

    [24]

    Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar

    [25]

    Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar

    [26]

    Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar

    [27]

    Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar

    [28]

    Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar

    [29]

    Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar

  • 图 1  CsPbBr3 纳米晶的(a) 低分辨率TEM照片, 比例尺为20 nm; (b) 高分辨率TEM照片, 比例尺为5 nm; (c) 快速傅里叶变换图; (d) XRD图

    Fig. 1.  (a) Low- and (b) high-resolution TEM images of CsPbBr3 nanocrystals, corresponding scale bars are 20 and 5 nm; (c) fast Fourier transform and (d) XRD patterns.

    图 2  CsPbBr3纳米晶的(a) 室温光照和紫外灯下照片, (b) 分子结构示意图, (c) 能谱分析图和(d) 拉曼光谱图

    Fig. 2.  (a) Photos of CsPbBr3 solution under ambient room light and UV illumination; (b) schematic illustration, (c) energy-dispersive spectroscopy spectra and (d) Raman spectrum of CsPbBr3 nanocrystals.

    图 3  CsPbBr3纳米晶的(a) 激发谱、(b) 吸收谱和荧光光谱、(c) 光致发光衰减谱和(d) 瞬态吸收谱

    Fig. 3.  (a) Excitation spectrum, (b) optical absorption and photoluminescence spectrum, (c) photoluminescence decay spectrum and (d) transient absorption spectrum of CsPbBr3 nanocrystals.

    图 4  (a) 惰性配体或(b) 强电负性配体AMPS对CsPbBr3纳米晶光学性质影响的模型

    Fig. 4.  A model of the effect of (a) inertia ligand or (b) strongly electronegative ligand AMPS on the optical properties of CsPbBr3 nanocrystals.

  • [1]

    Cannavale A, Cossari P, Eperon G E, et al. 2016 Energy Environ. Sci. 9 2682Google Scholar

    [2]

    Parola S, Julián-López B, Carlos L D, Sanchez C 2016 Adv. Funct. Mater. 26 6506Google Scholar

    [3]

    Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar

    [4]

    Shao Y, Yuan Y, Huang J 2016 Nat. Energy 1 15001Google Scholar

    [5]

    Protesescu L, Yakunin S, Bodnarchuk M I, et al. 2015 Nano Lett. 15 3692Google Scholar

    [6]

    Zhang D, Yu Y, Bekenstein Y, Wong A B, Alivisatos A P, Yang P 2016 J. Am. Chem. Soc. 138 13155Google Scholar

    [7]

    Chen M, Zou Y, Wu L, Pan Q, Yang D, Hu H, Tan Y, Zhong Q, Xu Y, Liu H 2017 Adv. Funct. Mater. 27 1701121Google Scholar

    [8]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [9]

    Li G, Rivarola F W R, Davis N J, et al. 2016 Adv. Mater. 28 3528Google Scholar

    [10]

    Xu Y, Chen Q, Zhang C, et al. 2016 J. Am. Chem. Soc. 138 3761Google Scholar

    [11]

    Wang H C, Lin S Y, Tang A C, et al. 2016 Angew. Chem. Int. Ed. 55 7924Google Scholar

    [12]

    Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T 2016 Adv. Mater. 28 10710Google Scholar

    [13]

    Swarnkar A, Chulliyil R, Ravi V K, Irfanullah M, Chowdhury A, Nag A 2015 Angew. Chem. Int. Ed. 54 15424Google Scholar

    [14]

    Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk M I, Grotevent M J, Kovalenko M V 2015 Nano Lett. 15 5635Google Scholar

    [15]

    Akkerman Q A, D’Innocenzo V, Accornero S, et al. 2015 J. Am. Chem. Soc. 137 10276Google Scholar

    [16]

    Grim J Q, Manna L, Moreels I 2015 Chem. Soc. Rev. 44 5897Google Scholar

    [17]

    Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662Google Scholar

    [18]

    Xu Y, Zhang Q, Lv L, et al. 2017 Nanoscale 9 17248Google Scholar

    [19]

    Yang B, Chen J, Hong F, et al. 2017 Angew. Chem. Int. Ed. 56 12471Google Scholar

    [20]

    Zheng X, Hou Y, Sun H T, Mohammed O F, Sargent E H, Bakr O M 2019 J. Phys. Chem. Lett. 10 2629Google Scholar

    [21]

    Tong Y, Bladt E, Aygüler M F, et al. 2016 Angew. Chem. Int. Ed. 55 13887Google Scholar

    [22]

    Mondal N, De A, Samanta A 2018 ACS Energy Lett. 4 3239Google Scholar

    [23]

    Behera R K, Das Adhikari S, Dutta S K, Dutta A, Pradhan N 2018 J. Phys. Chem. Lett. 9 6884Google Scholar

    [24]

    Imran M, Caligiuri V, Wang M, Goldoni L, Prato M, Krahne R, De Trizio L, Manna L 2018 J. Am. Chem. Soc. 140 2656Google Scholar

    [25]

    Das Adhikari S, Behera R K, Bera S, Pradhan N 2019 J. Phys. Chem. Lett. 10 1530Google Scholar

    [26]

    Akbali B, Topcu G, Guner T, et al. 2018 Phys. Rev. Mater. 2 034601Google Scholar

    [27]

    Kong X, Xu F, Wang W, et al. 2019 Appl. Phys. Lett. 115 153104Google Scholar

    [28]

    Sun S, Yuan D, Xu Y, Wang A, Deng Z 2016 ACS Nano 10 3648Google Scholar

    [29]

    Yang D, Li X, Zhou W, et al. 2019 Adv. Mater. 31 1900767Google Scholar

  • [1] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211895
    [2] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [3] 樊钦华, 祖延清, 李璐, 代锦飞, 吴朝新. 发光铅卤钙钛矿纳米晶稳定性的研究进展. 物理学报, 2020, 69(11): 118501. doi: 10.7498/aps.69.20191767
    [4] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战. 物理学报, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [5] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性. 物理学报, 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] 赵宇龙, 陈铮, 龙建, 杨涛. 晶体相场法模拟纳米晶材料反霍尔-佩奇效应的微观变形机理. 物理学报, 2013, 62(11): 118102. doi: 10.7498/aps.62.118102
    [7] 王永田, 刘宗德, 易军, 薛志勇. Gd基非晶与Gd纳米晶复合结构的磁制冷效应. 物理学报, 2012, 61(5): 056102. doi: 10.7498/aps.61.056102
    [8] 王璇, 郑富, 芦佳, 白建民, 王颖, 魏福林. Al-O,C元素添加对FeCo合金薄膜磁性和频率特性的影响. 物理学报, 2011, 60(1): 017505. doi: 10.7498/aps.60.017505
    [9] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [10] 张弘, 刘曦, 王兰喜, 曹江伟, 刘小晰, 魏福林. 基片对交替溅射制备的MnZn铁氧体薄膜结构和磁性的影响. 物理学报, 2009, 58(7): 4970-4975. doi: 10.7498/aps.58.4970
    [11] 文玉华, 孙世刚, 张杨, 朱梓忠. 铂纳米晶在升温过程中结构演化与熔化特征的原子级模拟研究. 物理学报, 2009, 58(4): 2585-2589. doi: 10.7498/aps.58.2585
    [12] 展晓元, 张 跃, 齐俊杰, 顾有松, 郑小兰. FePt薄膜中磁相互作用. 物理学报, 2007, 56(3): 1725-1729. doi: 10.7498/aps.56.1725
    [13] 韩献堂, 王 治, 马晓华, 王光建. Fe39.4-xCo40Si9B9Nb2.6Cux纳米晶合金的有效磁各向异性研究. 物理学报, 2007, 56(3): 1697-1701. doi: 10.7498/aps.56.1697
    [14] 郑瑞伦, 陶 冶. 形状和原子数对纳米晶表面能的影响. 物理学报, 2006, 55(4): 1942-1946. doi: 10.7498/aps.55.1942
    [15] 方 鲲, 高善民, 邱海林, 曹传宝, 朱鹤孙. 立方相β-GaN纳米晶的气相化学反应制备研究. 物理学报, 2005, 54(5): 2267-2271. doi: 10.7498/aps.54.2267
    [16] 许圣华, 辛 煜, 宁兆元, 程珊华, 黄 松, 陆新华, 项苏留, 陈 军. ECR-CVD制备的非晶SiOxNy薄膜的光致蓝光发射. 物理学报, 2003, 52(5): 1287-1291. doi: 10.7498/aps.52.1287
    [17] 荣传兵, 张宏伟, 张 健, 张绍英, 沈保根. 纳米晶永磁中面缺陷对畴壁钉扎机理的研究. 物理学报, 2003, 52(3): 708-712. doi: 10.7498/aps.52.708
    [18] 刘舒曼, 刘峰奇, 张志华, 郭海清, 王占国. ZnO:Tb纳米晶的协同发光现象. 物理学报, 2000, 49(11): 2307-2309. doi: 10.7498/aps.49.2307
    [19] 赵尚弘, 陈国夫, 赵 卫, 王屹山, 于连君, 常 琳. 高效全固体脉冲蓝光系统实验研究. 物理学报, 2000, 49(7): 1273-1276. doi: 10.7498/aps.49.1273
    [20] 郝昭, 陈晓波, 侯延冰, 宋峰, 王虹, 张光寅. Tm,Yb掺杂五磷酸盐非晶中的上转换蓝光发射. 物理学报, 1997, 46(6): 1206-1211. doi: 10.7498/aps.46.1206
计量
  • 文章访问数:  6994
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-22
  • 修回日期:  2020-04-21
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-08-05

/

返回文章
返回