搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性磁体Co2Mo3O8多铁性和磁电耦合效应的平均场近似模型

唐永森 汪寒艳 余兵 李兴鳌

引用本文:
Citation:

极性磁体Co2Mo3O8多铁性和磁电耦合效应的平均场近似模型

唐永森, 汪寒艳, 余兵, 李兴鳌

Mean-field approximation model for multiferroicity and magnetoelectric coupling effects in the polar magnet Co2Mo3O8

Tang Yongsen, Wang Hanyan, Yu Bing, Li Xingao
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,极性磁体M2Mo3O8(M:3d过渡金属)因其独特的晶体结构、多重连续的磁电耦合态转变及潜在应用价值,成为凝聚态物理和材料科学领域的研究热点。特别是Co2Mo3O8基态下展现出显著的二阶非线性磁电耦合效应,对应独特的磁电耦合微观机制和实际应用价值。本文基于分子场唯象模型,构建了Co2Mo3O8体系的两套不同的反铁磁子格子,给出体系的自发磁矩、自旋诱导的铁电极化、一阶线性磁电耦合系数、以及二阶非线性磁电耦合系数随温度的变化关系。结果显示Co2Mo3O8的二阶磁电耦合系数要明显比同构的Fe2Mo3O8以及Mn2Mo3O8大,这主要是因为Co2Mo3O8的两个不同子格子间的反铁磁交换作用能量更低,体系所处的状态更加稳定。这也表明,在Co2Mo3O8体系拥有更加稳定的不可逆性,展现了非常明显的磁电二极管(magnetoelectric diode)效应,为磁电二极管(magnetoelectric diode)的发展提供了坚实的理论和实验基础。
    In recent years, polar magnets M2Mo3O8(M:3d transition metal) have emerged as a research focus in condensed matter physics and materials science due to their unique crystal structures, multiple continuous magnetoelectric-coupled state transitions, and potential applications. Notably, Co2Mo3O8 exhibits a significant second-order nonlinear magnetoelectric coupling effect in its ground state, corresponding to a unique microscopic magnetoelectric coupling mechanism and practical value. In this work, based on a molecular field phenomenological model, we construct two distinct antiferromagnetic sublattices for the Co2Mo3O8 system and present the temperature-dependent variations of its spontaneous magnetic moment, spin-induced ferroelectric polarization, first-order linear magnetoelectric coupling coefficient, and second-order nonlinear magnetoelectric coupling coefficient. Particularly, the parameters t=-1 and o=-0.96 indicate distinct exchange energies between the magnetic sublattices associated with tetrahedra (Cot) and octahedra (Coo). The Co2+ ions in these two sublattices, which were characterized by different molecular field coefficients, synergistically mediate a spin-induced spontaneous polarization of PS~0.12 μC/cm2 through the exchange striction mechanism and p-d hybridization mechanism in Co2Mo3O8. In addition, the significant second-order magnetoelectric coupling effect with a coefficient peaking at 70x10-19 s/A near the TN in Co2Mo3O8, where this coefficient is significantly larger than those of isostructural Fe2Mo3O8 (1.81x10-28 s/A) and Mn2Mo3O8, implies that this enhancement primarily arises from the weaker inter-sublattice antiferromagnetic exchange between its two sublattices, leading to a stabilizes metastable spin configuration. This also indicates that the Co2Mo3O8 system possesses stronger irreversibility stability and exhibits a pronounced magnetoelectric diode effect, providing a solid theoretical and computational foundation for the development of magnetoelectric diodes.<
  • [1]

    Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, and Tokura Y 2003Nature 426 55

    [2]

    Cheong S, Mostovoy M 2007Nat. Mater. 6 13

    [3]

    Spaldin N, Ramesh R 2019Nat. Mater. 18 203.

    [4]

    Lu C L, Wu M H, Lin L, Liu J -M 2019Nat. Sci. Rev. 6 653

    [5]

    Dong S, Liu J -M, Cheong S -W, and Ren Z 2015Adv. Phys. 64 519

    [6]

    Nan C W 2015Sci. Sin.: Tech. 45339(in Chinese) [南策文2015中国科学: 技术科学45339]

    [7]

    Liu J M, Nan C W 2014Physics 4388(in Chinese) [刘俊明, 南策文2014物理4388]

    [8]

    Li Z W, Zhang S Y, Li Q S, and Liu H 2023J. Adv. Dielect. 13 2345002

    [9]

    Liang M C, Yang J, Yang H Y, Liang C, Nie Z Y, Ai H, Zhang T, Ma J, Huang H B, and Wang J 2024J. Adv. Dielect. 14 2440002

    [10]

    Khade V, and Wuppulluri M 2024 J. Adv. Dielect. 14 2340001

    [11]

    Wu F, Bao S, Zhou J, Wang Y, Sun J, Wen J, Wan Y, and Zhang Q 2023Nat. Phys. 19 1868

    [12]

    Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spldin N A, Rabe K M, Wuttig M, and Ramesh R 2003Science 299 1719

    [13]

    Wang Y Z, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, and Cheong S -W 2015Sci. Rep. 5 12268

    [14]

    Spaldin N A, and Ramesh R 2019Nat. Mater. 18 203

    [15]

    Kurumaji T, Ishiwata S, and Tokura Y 2015Phys. Rev. X 5 031034

    [16]

    Chang Y, Weng Y, Xie Y, You B, Wang J, Li L, Liu J -M, Dong S, and Lu C 2023 Phys. Rev. Lett. 131 136701

    [17]

    Tang Y, Wang S, Lin L, Li C, Zheng S, Li C, Zhang J, Yan Z, Jiang X, and Liu J -M 2019Phys. Rev. B 100 134112

    [18]

    Kim J, Artyukhin S, Mun E, Jaime M, Harrison N, Hansen A, Yang J, Oh Y, Vanderbilt D, Zapf V, and Cheong S 2015Phys. Rev. Lett. 115 137201

    [19]

    Rivera J -P 1994Ferroelectrics 161 165

    [20]

    Kurumaji T, Ishiwata S, Tokura Y 2017Phys. Rev. B 95 045142

    [21]

    Kurumaji T, Takahashi Y, Fujioka J, Masuda R, Shishikura H, Ishiwata S, and Tokura Y 2017Phys. Rev. B 95020405(R)

    [22]

    Yu B, Hu Z -Q, Cheng Y -X, Peng B, Zhou Z -Y, Liu M 2018 Acta Phys. Sin. 67 157507(in Chinese) [俞斌, 胡忠强, 程宇心, 彭斌, 周子尧, 刘明2018物理学报67 157507]

    [23]

    Shen J, Shang D, Sun Y 2018Acta Phys. Sin. 67 127501(in Chinese) [申见昕, 尚大山, 孙阳2018物理学报67 127501]

    [24]

    Yu S, Gao B, Kim J, Cheong S -W, Man M, Madéo J, Dani K, and Talbayev D 2018Phys. Rev. Lett. 120 037601

    [25]

    Tang Y, Zhou G, Lin L, Chen R, Wang J, Lu C, Huang L, Zhang J, Yan Z, Lu X, Huang X, Jiang, and Liu J -M 2022 Phys. Rev. B 105064108

    [26]

    Reschke S, Farkas D, Strinić A, Ghara S, Guratinder K, Zaharko O, Prodan L, Tsurkan V, Szaller D, Bordács S, Deisenhofer J, and Kézsmárki I 2022npj Quantum Mater. 7 1

    [27]

    McAlister S, and Strobel P 1983J. Magn. Magn. 30 340

    [28]

    Tang Y, Zhang J, Lin L, Chen R, Wang J, Zheng S, Li C, Zhang Y, Zhou G, Huang L, Yan Z, Lu X, Wu D, Huang X, Jiang X, and Liu J -M 2021Phys. Rev. B 103 014112

    [29]

    Schmid H 1973Int. J. Magn. 4 337

    [30]

    Johnston D, McQueeney R, Lake B, Honecker A, Zhitomirsky M, Nath R, Furukawa Y, Antropov V, and Yogesh Singh 2011Phys. Rev. B 84 094445

    [31]

    Solovyev I V, Streltsov S V 2019Phys. Rev. Matter. 3 114402

    [32]

    Taniguchi K, Abe N, Takenobu T, Iwasa Y, and T. Arima 2006Phys. Rev. Lett. 97 097203

    [33]

    Balents L 2010 Nature 464 199

    [34]

    Joshua S J 1984Aust. J. Phys. 37 305

    [35]

    Dou S, Yang X, Xia Y, Yuan J, Cui H, Wei B, Bai X, Feng C 2023Acta Phys. Sin. 72157501(in Chinese) [豆树清, 杨晓阔, 夏永顺, 袁佳卉, 崔焕卿, 危波, 白馨, 冯朝文2023物理学报72 157501]

    [36]

    Song X, Gao X, Liu J -M 2018Acta Phys. Sin. 67 157512(in Chinese) [宋骁, 高兴森, 刘俊明2018物理学报67 157512]

    [37]

    Tang Y, Zhou S, Weng Y, Zhang A, Zhang Y, Zheng S, and Li X 2025 Phys. Rev. B 111 134423

    [38]

    Wei X, Zhang X, Yu H, Gao L, Tang W, Hong M, Chen Z, Kang Z, Zhang Z, and Zhang Y 2024Nat. Electr. 7 138

  • [1] 夏永顺, 崔焕卿, 杨晓阔, 郭宝军, 豆树清, 康艳, 危波, 梁卜嘉. 应变调控双组分纳磁体辐射状磁涡旋极性可逆翻转. 物理学报, doi: 10.7498/aps.74.20250575
    [2] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, doi: 10.7498/aps.71.20220591
    [3] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, doi: 10.7498/aps.69.20201193
    [4] 鹿博, 王大军. 超冷极性分子. 物理学报, doi: 10.7498/aps.68.20182274
    [5] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [6] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, doi: 10.7498/aps.67.20180878
    [7] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, doi: 10.7498/aps.67.20180712
    [8] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, doi: 10.7498/aps.67.20181561
    [9] 吴枚霞, 李满荣. 异常双钙钛矿A2BB'O6氧化物的多铁性. 物理学报, doi: 10.7498/aps.67.20180817
    [10] 李永超, 周航, 潘丹峰, 张浩, 万建国. Co/Co3O4/PZT多铁复合薄膜的交换偏置效应及其磁电耦合特性. 物理学报, doi: 10.7498/aps.64.097701
    [11] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, doi: 10.7498/aps.64.044101
    [12] 袁昌来, 周秀娟, 轩敏杰, 许积文, 杨云, 刘心宇. K0.5Na0.5NbO3-LiSbO3-BiFeO3/CuFe2O4复合陶瓷的制备与磁电性能研究. 物理学报, doi: 10.7498/aps.62.047501
    [13] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, doi: 10.7498/aps.61.097702
    [14] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, doi: 10.7498/aps.60.067701
    [15] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, doi: 10.7498/aps.59.7390
    [16] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, doi: 10.7498/aps.58.3491
    [17] 高剑森, 张 宁. Fe掺杂量对双层复合结构BaTi1-zFezO3+δ-Tb1-xDyxFe2-y中磁电耦合的影响. 物理学报, doi: 10.7498/aps.57.7872
    [18] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, doi: 10.7498/aps.54.4213
    [19] 王亦忠, 胡季帆, 张绍英, 张宏伟, 沈保根. Nd-Fe(Co,Nb)-B交换耦合磁体的磁性. 物理学报, doi: 10.7498/aps.48.520
    [20] 陈慧余, 罗有泉, 朱弘, 温琳清. 81NiFe/Cr多层膜磁电阻单向各向异性与交换耦合. 物理学报, doi: 10.7498/aps.43.1185
计量
  • 文章访问数:  39
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-28

/

返回文章
返回