-
非晶超导薄膜材料具有超导电性均匀性高以及光响应灵敏度好等优势,是研制大光敏面以及中远红外超导纳米线单光子探测器(SNSPD)的理想超导薄膜材料。本文系统地研究了新型非晶锗化钨超导体的超导物性随薄膜材料厚度的变化,对比硅化钨与锗化钼非晶超导薄膜,研究发现锗化钨合金与硅化钨具有相似的超导物性,包括相近的临界温度和相干长度,稍低的正常态电子扩散系数和较高的磁穿透深度。相较于锗化钼,锗化钨合金与硅化钨的电子扩散系数和磁穿透深度均呈现不同程度的增加。通过研究三种不同非晶薄膜的超导物性参数,为大光敏面、高灵敏度超导纳米线单光子探测器的研发与性能优化提供新的材料选择与实验依据。
-
关键词:
- 超导纳米线单光子探测器 /
- 非晶超导薄膜材料 /
- 锗化钨 /
- 超导物理学性质
Amorphous superconducting thin film materials have the advantages of high superconducting uniformity and good optical response sensitivity, which make them ideal materials for fabricating large-area and mid-infrared superconducting nanowire single-photon detectors (SNSPD). In this paper, three series of different amorphous superconducting films were deposited on Si wafers by room-temperature magnetron co-sputtering. We systematically investigated the physical properties of these films as a function of film thickness, including the critical temperature Tc, the Ginzburg-Landau coherence length ξ(0), normal-state electron diffusion coefficient De, magnetic penetration depth λ(0) and superconducting energy gap Δ(0). When compared with amorphous tungsten silicide (WSi) and molybdenum germanide (MoGe) superconducting thin films, it was found that WGe alloys and WSi have similar superconducting properties, including critical temperature and coherence length, slightly lower normal-state electron diffusion coefficient and higher magnetic penetration depth. Compared to MoGe, both WGe and WSi alloys exhibit larger normal-state electron diffusion coefficient and higher magnetic penetration depths. By studying the superconducting properties of three different amorphous thin films, this research provides new material options and experimental evidence for the development and performance optimization of large-area, high-sensitivity superconducting nanowire single-photon detectors.-
Keywords:
- superconducting nanowire single photon detector /
- Amorphous Superconducting Thin Film Materials /
- Tungsten Germanide /
- Superconducting Physical Properties
-
[1] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114
[2] Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250
[3] Shibata H, Fukao K, Kirigane N, Karimoto S, Yamamoto H 2017 IEEE Trans. Appl. Supercond. 27 2200504
[4] Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204
[5] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570
[6] Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77
[7] Zhang B, Guan Y, Xia L, Dong D, Chen Q, Xu C, Wu C, Huang H, Zhang L, Kang L, Chen J, Wu P 2021 Supercond. Sci. Technol. 34 034005
[8] Taylor G G, Morozov D, Gemmell N R, Erotokritou K, Miki S, Terai H, Hadfield R H 2019 Opt. Express 27 38147
[9] Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705
[10] Zhang B, Chen Q, Guan Y Q, Jin F F, Wang H, Zhang L B, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Wu P H 2021 Acta Phys. Sin. 70 198501(in Chinese)[张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨2021物理学报70 198501]
[11] Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101
[12] Chen L, Schwarzer D, Lau J A, Verma V B, Stevens M J, Marsili F, Mirin R P, Nam S W, Wodtke A M 2018 Opt. Express 26 14859
[13] You L X 2018 Infrared and Laser Engineering 47 1202001(in Chinese)[尤立星2018红外与激光工程47 1202001]
[14] Miki S, Takeda M, Fujiwara M, Sasaki M, Otomo A, Wang Z 2009 Appl. Phys. Lett. 2 075002
[15] Sun R, Makise K, Zhang L, Terai H, Wang Z 2016 AIP Advances 6 065119
[16] Cheng R S, Wang S H, Tang H X 2019 Appl. Phys. Lett. 115 241101
[17] Tanner M G, Natarajan C M, Pottapenjara V K, O'Connor J A, Warburton R J, Hadfield R H, Baek B, Nam S, Dorenbos S N, Ureña E B, Zijlstra T, Klapwijk T M, Zwiller V 2010 Appl. Phys. Lett. 96 221109
[18] Dorenbos S N, Reiger E M, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 131101
[19] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photonics 7 210
[20] Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114
[21] Verma V B, Lita A E, Vissers M R, Marsili F, Pappas D P, Mirin R P, Nam S W 2014 Appl. Phys. Lett. 105 022602
[22] Zhang X, Engel A, Wang Q, Schilling A, Semenov A, Sidorova M, Hübers H W, Charaev I, Ilin K, Siegel M 2016 Phys. Rev. B 94 174509
[23] Häussler M, Mikhailov M Y, Wolff M A, Schuck C 2020 APL Photonics 5 076106
[24] Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 251105
[25] Wollman E E, Allmaras J P, Beyer A D, Korzh B, Runyan M C, Narváez L, Farr W H, Marsili F, Briggs R M, Miles G J, Shaw M D 2024Opt. Express 32 48185
[26] Verma V B, Korzh B, Bussières F, Horansky R D, Dyer S D, Lita A E, Vayshenker I, Marsili F, Shaw M D, Zbinden H, Mirin R P, Nam S W 2015 Opt. Express 23 33792
[27] Zhang X, Ma R, Guo Z, Zhang C, Chen D, Huan Q, Huang J, Zhang X, Xiao Y, Yu H, Liu X, Li H, Wang Z, Xie X, You L 2023Opt. Express 31 30650
[28] Ma R, Guo Z, Chen D, Dai X, Xiao Y, Zhang C, Xiong J, Huang J, Zhang X, Liu X, Rong L, Li H, Zhang X, You L 2025Adv. Photonics Nexus 4 026003
[29] Banerjee A, Baker L J, Doye A, Nord M, Heath R M, Erotokritou K, Bosworth D, Barber Z H, MacLaren I, Hadfield R H 2017 Supercond. Sci. Technol. 30 084010
[30] Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792
[31] Ercolano P, Zhang X, Pepe G P, You L 2025 Supercond. Sci. Technol. 38 015011
[32] Yang S, Chen Y, Sun L, Zhou H, Li Y, Huang J, Zheng X, Ma R, Xiong J, Wan Z, Liu X, Li H, Zheng J, Peng W, Zhang X, You L 2025 Appl. Phys. Lett. 126 162601
[33] Zhang X, Charaev I, Liu H, Zhou T, Zhu D, Berggren K K, Schilling A 2021Supercond. Sci. Technol. 34 095003
[34] Johnson W L, Tsuei C C, Raider S I, Laibowitz R B 1979 J. Appl. Phys. 50 4240
[35] Zhang X, Lita A E, Sidorova M, Verma V B, Wang Q, Nam S W, Semenov A, Schilling A 2018 Phys. Rev. B 97 174502
[36] Skocpol W J, Tinkham M 1975 Rep. Prog. Phys. 38 1049
[37] Zhang X, Lita A E, Smirnov K, Liu H, Zhu D, Verma V B, Nam S W, Schilling A 2020 Phys. Rev. B 101 060508
[38] Zhang X, Shu R, Liu H, Elsukova A, Persson P O A, Schilling A, Von Rohr F O, Eklund P 2022Commun. Phys. 5 282
[39] Helfand E, Werthamer N R 1966 Phys. Rev. 147 288
[40] Zhang X, Huan Q, Ma R, Zhang X, Huang J, Liu X, Peng W, Li H, Wang Z, Xie X, You L 2024Adv. Quantum Technol. 7 2300378
[41] Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787
[42] London H, London F 1935 Proc. R. Soc. London, Ser. A 149 71
[43] Tinkham M, Emery V 1996 Phys. Today 49 65
[44] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
[45] Zotova A N, Vodolazov D Y 2012 Phys. Rev. B 85 024509
计量
- 文章访问数: 56
- PDF下载量: 3
- 被引次数: 0