搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向超导纳米线单光子探测器研制的新型非晶超导薄膜材料的物性研究

许洛 张孝富 尤立星

引用本文:
Citation:

面向超导纳米线单光子探测器研制的新型非晶超导薄膜材料的物性研究

许洛, 张孝富, 尤立星

Investigations on the Physical Properties of Novel Amorphous Superconducting Thin Film Materials for Superconducting Nanowire Single-Photon Detectors

XU Luo, ZHANG Xiaofu, YOU Lixing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 非晶超导薄膜材料具有超导电性均匀性高以及光响应灵敏度好等优势,是研制大光敏面以及中远红外超导纳米线单光子探测器(SNSPD)的理想超导薄膜材料。本文系统地研究了新型非晶锗化钨超导体的超导物性随薄膜材料厚度的变化,对比硅化钨与锗化钼非晶超导薄膜,研究发现锗化钨合金与硅化钨具有相似的超导物性,包括相近的临界温度和相干长度,稍低的正常态电子扩散系数和较高的磁穿透深度。相较于锗化钼,锗化钨合金与硅化钨的电子扩散系数和磁穿透深度均呈现不同程度的增加。通过研究三种不同非晶薄膜的超导物性参数,为大光敏面、高灵敏度超导纳米线单光子探测器的研发与性能优化提供新的材料选择与实验依据。
    Amorphous superconducting thin film materials have the advantages of high superconducting uniformity and good optical response sensitivity, which make them ideal materials for fabricating large-area and mid-infrared superconducting nanowire single-photon detectors (SNSPD). In this paper, three series of different amorphous superconducting films were deposited on Si wafers by room-temperature magnetron co-sputtering. We systematically investigated the physical properties of these films as a function of film thickness, including the critical temperature Tc, the Ginzburg-Landau coherence length ξ(0), normal-state electron diffusion coefficient De, magnetic penetration depth λ(0) and superconducting energy gap Δ(0). When compared with amorphous tungsten silicide (WSi) and molybdenum germanide (MoGe) superconducting thin films, it was found that WGe alloys and WSi have similar superconducting properties, including critical temperature and coherence length, slightly lower normal-state electron diffusion coefficient and higher magnetic penetration depth. Compared to MoGe, both WGe and WSi alloys exhibit larger normal-state electron diffusion coefficient and higher magnetic penetration depths. By studying the superconducting properties of three different amorphous thin films, this research provides new material options and experimental evidence for the development and performance optimization of large-area, high-sensitivity superconducting nanowire single-photon detectors.
  • [1]

    Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N, Esmaeil Zadeh I 2021 APL Photonics 6 036114

    [2]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250

    [3]

    Shibata H, Fukao K, Kirigane N, Karimoto S, Yamamoto H 2017 IEEE Trans. Appl. Supercond. 27 2200504

    [4]

    Zhang W, Huang J, Zhang C, You L, Lv C, Zhang L, Li H, Wang Z, Xie X 2019 IEEE Trans. Appl. Supercond. 29 2200204

    [5]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photonics 15 570

    [6]

    Khatri F I, Robinson B S, Semprucci M D, Boroson D M 2015 Acta Astronaut. 111 77

    [7]

    Zhang B, Guan Y, Xia L, Dong D, Chen Q, Xu C, Wu C, Huang H, Zhang L, Kang L, Chen J, Wu P 2021 Supercond. Sci. Technol. 34 034005

    [8]

    Taylor G G, Morozov D, Gemmell N R, Erotokritou K, Miki S, Terai H, Hadfield R H 2019 Opt. Express 27 38147

    [9]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705

    [10]

    Zhang B, Chen Q, Guan Y Q, Jin F F, Wang H, Zhang L B, Tu X C, Zhao Q Y, Jia X Q, Kang L, Chen J, Wu P H 2021 Acta Phys. Sin. 70 198501(in Chinese)[张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨2021物理学报70 198501]

    [11]

    Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W, Shaw M D 2021 APL Photonics 6 056101

    [12]

    Chen L, Schwarzer D, Lau J A, Verma V B, Stevens M J, Marsili F, Mirin R P, Nam S W, Wodtke A M 2018 Opt. Express 26 14859

    [13]

    You L X 2018 Infrared and Laser Engineering 47 1202001(in Chinese)[尤立星2018红外与激光工程47 1202001]

    [14]

    Miki S, Takeda M, Fujiwara M, Sasaki M, Otomo A, Wang Z 2009 Appl. Phys. Lett. 2 075002

    [15]

    Sun R, Makise K, Zhang L, Terai H, Wang Z 2016 AIP Advances 6 065119

    [16]

    Cheng R S, Wang S H, Tang H X 2019 Appl. Phys. Lett. 115 241101

    [17]

    Tanner M G, Natarajan C M, Pottapenjara V K, O'Connor J A, Warburton R J, Hadfield R H, Baek B, Nam S, Dorenbos S N, Ureña E B, Zijlstra T, Klapwijk T M, Zwiller V 2010 Appl. Phys. Lett. 96 221109

    [18]

    Dorenbos S N, Reiger E M, Perinetti U, Zwiller V, Zijlstra T, Klapwijk T M 2008 Appl. Phys. Lett. 93 131101

    [19]

    Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P, Nam S W 2013 Nat. Photonics 7 210

    [20]

    Verma V B, Marsili F, Harrington S, Lita A E, Mirin R P, Nam S W 2012 Appl. Phys. Lett. 101 251114

    [21]

    Verma V B, Lita A E, Vissers M R, Marsili F, Pappas D P, Mirin R P, Nam S W 2014 Appl. Phys. Lett. 105 022602

    [22]

    Zhang X, Engel A, Wang Q, Schilling A, Semenov A, Sidorova M, Hübers H W, Charaev I, Ilin K, Siegel M 2016 Phys. Rev. B 94 174509

    [23]

    Häussler M, Mikhailov M Y, Wolff M A, Schuck C 2020 APL Photonics 5 076106

    [24]

    Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 251105

    [25]

    Wollman E E, Allmaras J P, Beyer A D, Korzh B, Runyan M C, Narváez L, Farr W H, Marsili F, Briggs R M, Miles G J, Shaw M D 2024Opt. Express 32 48185

    [26]

    Verma V B, Korzh B, Bussières F, Horansky R D, Dyer S D, Lita A E, Vayshenker I, Marsili F, Shaw M D, Zbinden H, Mirin R P, Nam S W 2015 Opt. Express 23 33792

    [27]

    Zhang X, Ma R, Guo Z, Zhang C, Chen D, Huan Q, Huang J, Zhang X, Xiao Y, Yu H, Liu X, Li H, Wang Z, Xie X, You L 2023Opt. Express 31 30650

    [28]

    Ma R, Guo Z, Chen D, Dai X, Xiao Y, Zhang C, Xiong J, Huang J, Zhang X, Liu X, Rong L, Li H, Zhang X, You L 2025Adv. Photonics Nexus 4 026003

    [29]

    Banerjee A, Baker L J, Doye A, Nord M, Heath R M, Erotokritou K, Bosworth D, Barber Z H, MacLaren I, Hadfield R H 2017 Supercond. Sci. Technol. 30 084010

    [30]

    Wollman E E, Verma V B, Beyer A D, Briggs R M, Korzh B, Allmaras J P, Marsili F, Lita A E, Mirin R P, Nam S W, Shaw M D 2017 Opt. Express 25 26792

    [31]

    Ercolano P, Zhang X, Pepe G P, You L 2025 Supercond. Sci. Technol. 38 015011

    [32]

    Yang S, Chen Y, Sun L, Zhou H, Li Y, Huang J, Zheng X, Ma R, Xiong J, Wan Z, Liu X, Li H, Zheng J, Peng W, Zhang X, You L 2025 Appl. Phys. Lett. 126 162601

    [33]

    Zhang X, Charaev I, Liu H, Zhou T, Zhu D, Berggren K K, Schilling A 2021Supercond. Sci. Technol. 34 095003

    [34]

    Johnson W L, Tsuei C C, Raider S I, Laibowitz R B 1979 J. Appl. Phys. 50 4240

    [35]

    Zhang X, Lita A E, Sidorova M, Verma V B, Wang Q, Nam S W, Semenov A, Schilling A 2018 Phys. Rev. B 97 174502

    [36]

    Skocpol W J, Tinkham M 1975 Rep. Prog. Phys. 38 1049

    [37]

    Zhang X, Lita A E, Smirnov K, Liu H, Zhu D, Verma V B, Nam S W, Schilling A 2020 Phys. Rev. B 101 060508

    [38]

    Zhang X, Shu R, Liu H, Elsukova A, Persson P O A, Schilling A, Von Rohr F O, Eklund P 2022Commun. Phys. 5 282

    [39]

    Helfand E, Werthamer N R 1966 Phys. Rev. 147 288

    [40]

    Zhang X, Huan Q, Ma R, Zhang X, Huang J, Liu X, Peng W, Li H, Wang Z, Xie X, You L 2024Adv. Quantum Technol. 7 2300378

    [41]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [42]

    London H, London F 1935 Proc. R. Soc. London, Ser. A 149 71

    [43]

    Tinkham M, Emery V 1996 Phys. Today 49 65

    [44]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175

    [45]

    Zotova A N, Vodolazov D Y 2012 Phys. Rev. B 85 024509

  • [1] 张幸, 刘玉林, 李刚, 燕少安, 肖永光, 唐明华. 更正: 基于55 nm DICE结构的单粒子翻转效应模拟研究[物理学报 2024, 73(6): 066103]. 物理学报, doi: 10.7498/aps.73.079901
    [2] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析. 物理学报, doi: 10.7498/aps.73.20231504
    [3] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, doi: 10.7498/aps.73.20231526
    [4] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路. 物理学报, doi: 10.7498/aps.73.20240398
    [5] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, doi: 10.7498/aps.72.20230248
    [6] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.72.20230326
    [7] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, doi: 10.7498/aps.71.20221594
    [8] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.71.20220373
    [9] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, doi: 10.7498/aps.71.20221569
    [10] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, doi: 10.7498/aps.70.20210185
    [11] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.70.20210486
    [12] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, doi: 10.7498/aps.70.20210652
    [13] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, doi: 10.7498/aps.66.198501
    [14] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, doi: 10.7498/aps.65.188501
    [15] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, doi: 10.7498/aps.64.228501
    [16] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, doi: 10.7498/aps.63.200303
    [17] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, doi: 10.7498/aps.61.208501
    [18] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, doi: 10.7498/aps.60.038501
    [19] 王德宁, 陈红, 王渭源. 多层衬底、高Tc超导薄膜热敏红外探测器的热导研究. 物理学报, doi: 10.7498/aps.41.1679
    [20] 李燕飞. 非晶ZrCo合金中的超导涨落和顺电导. 物理学报, doi: 10.7498/aps.39.151
计量
  • 文章访问数:  56
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 上网日期:  2025-07-24

/

返回文章
返回