搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导纳米线单光子探测器光子响应机制研究进展

张彪 陈奇 管焰秋 靳飞飞 王昊 张蜡宝 涂学凑 赵清源 贾小氢 康琳 陈健 吴培亨

引用本文:
Citation:

超导纳米线单光子探测器光子响应机制研究进展

张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨

Research progress of photon response mechanism of superconducting nanowire single photon detector

Zhang Biao, Chen Qi, Guan Yan-Qiu, Jin Fei-Fei, Wang Hao, Zhang La-Bao, Tu Xue-Cou, Zhao Qing-Yuan, Jia Xiao-Qing, Kang Lin, Chen Jian, Wu Pei-Heng
PDF
HTML
导出引用
  • 超导纳米线单光子探测器(SNSPD)已在量子信息、深空激光通信、激光雷达等众多领域发挥了重要的作用. 虽然SNSPD经过二十年的研究, 但其光子响应本征机制还有待完善. 深入理解与厘清其光子响应过程是研发高性能探测器的前提与关键. 现在较为成熟的超导纳米线单光子探测器响应理论有热点模型和涡旋模型. 但是这两种理论都存在一定的缺陷, 前者存在截止波长, 后者存在尺寸效应, 都需要进一步完善. 超导相位滑移是超导体的内禀性耗散, 有望用于解释超导纳米线单光子探测器的光子响应过程, 形成统一完备的理论. 这三种模型是对SNSPD光子检测理解的不断深入: 热点模型是一种唯象模型, 研究电子-声子等准粒子体系的相互作用; 涡旋模型由Ginzburg–Landau方程和电磁学方程出发, 研究涡旋在超导体中的运动及其带来的超导态耗散; 相位滑移模型是基于量子力学的解释, 研究热扰动和宏观量子隧穿引发的超导态耗散. 本文综述了热点模型、涡旋模型和超导相位滑移的基本概念、发展历史和研究进展, 讨论和对比了这三种理论的特点和发展前景, 为超导纳米线单光子探测器光子检测理论研究提供参考和借鉴.
    Superconducting nanowire single photon detector (SNSPD) plays a significant role in plenty of fields such as quantum information, deep space laser communication and lidar, while the mechanism of the photon response process still lacks a recognized theory. It is prerequisite and essential for fabricating high-performance SNSPD to understand in depth and clarify the photon response mechanism of the SNSPD. As mature theories on the SNSPD response progress, hot-spot model and vortex-based model both have their disadvantages: in the former there exists the cut-off wavelength and in the later there is the size effect, so they both need further improving. The Cut-off wavelength means that the detection efficiency of the SNSPD drops to zero with the increase of light wavelength, which is indicated by the hot-spot model but not yet observed in experiment. The size effect implies that the vortex does not exist in the weak link with the width less than 4.41ξ, where ξ is the GL coherence length. Phase slip is responsible for the intrinsic dissipation of superconductors, which promises to expound the SNSPD photon response progress and to establish a complete theory. This paper reviews and discusses the fundamental conception, the development history and the research progress of the hot-spot models, i.e. the vortex-based model and the superconductor phase slips, providing a reference for studying the SNSPD photon response mechanism.
      通信作者: 张蜡宝, lzhang@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304002)、国家自然科学基金(批准号: 12033002, 62071218, 61521001, 62071214, 61801206, 11227904)、广东省重点领域研究与发展计划(批准号: 2020B0303020001)、江苏省自然科学基金优秀青年基金(BK20200060)、中央高校基础研究基金、江苏省高等学校优势学科建设工程、青年人才引进计划和江苏省“青蓝工程”资助的课题
      Corresponding author: Zhang La-Bao, lzhang@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304002), the National Natural Science Foundation of China (Grant Nos. 12033002, 62071218, 61521001, 62071214, 61801206, 11227904), the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0303020001), the Excellent Youth Foundation of Jiangsu Natural Science Foundation, China (Grant No. BK20200060), the Fundamental Research Funds for the Central Universities, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Recruitment Program for Young Professionals, China, the Qing Lan Project and the Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Waves, China.
    [1]

    Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 120b 1479

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [6]

    石晴, 林镇辉, 杨瑾屏, 李婧, 史生才 2017 微波学报 S1 266

    Shi Q, Lin Z H, Yang J P, Li J, Shi S C 2017 J. Microwaves S1 266

    [7]

    Huang H B, Wu Y, Wang J, Bian Y B, Wang X, Li G Q, Zhang X Q, Li C G, Sun L, He Y S 2018 Physica C 550 78Google Scholar

    [8]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [9]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [10]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [11]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [12]

    J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zedeh 2021 APL Photonics 6 036114Google Scholar

    [13]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Pena C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [14]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar

    [15]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [16]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P, Gupta J A 2006 Appl. Phys. Lett. 89 031109Google Scholar

    [17]

    Hadfield R H, Stevens M J, Gruber S S, Miller A J, Schwall R E, Mirin R P, Nam S W 2005 Opt. Express 13 10846Google Scholar

    [18]

    Robinson B S, Kerman A J, Dauler E A, Barron R O, Caplan D O, Stevens M L, Carney J J, Hamilton S A, Yang J K W, Berggren K K 2006 Opt. Lett. 31 444Google Scholar

    [19]

    Zhang B, Guan Y Q, Xia L H, Dong D X, Chen Q, Xu C, Wu C, Huang H X, Zhang L B, Kang L, Chen J, Wu P H 2021 Supercond. Sci. Technol. 34 034005

    [20]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [21]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [22]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [23]

    Chi X M, Zou K, Gu C, Zichi J, Cheng Y H, Hu N, Lan X J, Chen S F, Lin Z Z, Zwiller V, Hu X L 2018 Opt. Lett. 43 5017Google Scholar

    [24]

    张蜡宝, 钟扬音, 康琳, 陈健, 吉争鸣, 许伟伟, 曹春海 2008 科学通报 53 0023Google Scholar

    Zhang L B, Zhong Y L, Kang L, Chen J, Ji Z M, Xu W W, Cao C H 2008 Chinese Sci. Bull. 53 0023Google Scholar

    [25]

    Chen Q, Ge R, Zhang L B, Li F Y, Zhang B, Jin F F, Han H, Dai Y, He G L, Fei Y, Wang X H, Wang H, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2021 Sci. Bull.

    [26]

    张海涛, 李祝莲, 汤儒峰, 翟东升, 李荣旺, 皮晓宇, 伏红林, 李语强 2020 红外与激光工程 49 1007

    Zhang H T, Li Z L, Tang R F, Zhai D S, Li R W, Pi X Y, Fu H L, Li Y Q 2020 Infrared Laser Eng. 49 1007

    [27]

    高添泉, 张才士, 李明, 李语强, 韩西达, 练军想, 刘胜前, 黎樽彪, 涂良成, 吴先霖, 杨山清, 叶贤基, 闫勇, 张蜡宝, 张鸿博, 张锦绣, 周立祥, 赵勇志, 赵宏超 2021 中山大学学报 60 247

    Gao T Q, Zhang C S, Li M, Li Y Q, Han X D, Lian J X, Liu S Q, Li Z B, Tu L C, Wu X L, Yang S Q, Ye X J, Yan Y, Zhang L B, Zhang H B, Zhang J X, Zhou L X, Zhao Y Z, Zhao H C 2021 J. Sun Yat-Sen Univ. 60 247

    [28]

    Zhu J, Chen Y J, Zhang L B, Jia X Q, Feng Z J, Wu G H, Yan X C, Zhai J Q, Wu Y, Chen Q, Zhou X Y, Wang Z Z, Zhang C, Kang L, Chen J, Wu P H 2017 Sci. Rep. 7 15113Google Scholar

    [29]

    Yu J, Zhang R L, Gao Y F, Sheng Z H, Gu M, Sun Q C, Liao J L, Wu T, Lin Z Y, Wu P H, Kang L, Li H, Zhang L B, Zheng W 2020 Opt. Lett. 45 394684

    [30]

    张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501Google Scholar

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501Google Scholar

    [31]

    Semenov A D, Gol'tsman G N, Korneev A A 2001 Physica C 351 349Google Scholar

    [32]

    Semenov A, Engel A, Hubers H W, Il'in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [33]

    Kadin A M, Leung M, Smith A D 1990 Phys. Rev. Lett. 65 3193Google Scholar

    [34]

    Likharev K K 1979 Rev. Mod. Phys. 51 101Google Scholar

    [35]

    Renema J J, Gaudio R, Wang Q, Zhou Z, Gaggero A, Mattioli F, Leoni R, Sahin D, de Dood M J A, Fiore A, van Exter M P 2014 Phys. Rev. Lett. 112 117604Google Scholar

    [36]

    Little W A 1967 Phys. Rev. 156 396Google Scholar

    [37]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Supercond. Sci. Technol. 25 06300116

    [38]

    Testardi L R 1971 Phys. Rev. B 4 2189Google Scholar

    [39]

    Skocpol W J, Beasley M R, Tinkham M 1974 J. Appl. Phys. 45 4054Google Scholar

    [40]

    Semenov A D, Nebosis R S, Gousev Y P, Heusinger M A, Renk K F 1995 Phys. Rev. B 52 581Google Scholar

    [41]

    Kadin A M, Johnson M W 1996 Appl. Phys. Lett. 69 3938Google Scholar

    [42]

    Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M, Berggren K K 2007 IEEE Trans. Appl. Supercond. 17 581Google Scholar

    [43]

    Vodolazov D Y 2017 Phys. Rev. Appl. 7 03401419

    [44]

    孙明娟, 刘要稳 2015 物理学报 64 247505Google Scholar

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505Google Scholar

    [45]

    Bulaevskii L N, Graf M J, Batista C D, Kogan V G 2011 Phys. Rev. B 83 144526Google Scholar

    [46]

    Bulaevskii L N, Graf M J, Kogan V G 2012 Phys. Rev. B 85 014505Google Scholar

    [47]

    Marsili F, Bellei F, Najafi F, Dane A E, Dauler E A, Molnar R J, Berggren K K 2012 Nano Lett. 12 4799Google Scholar

    [48]

    Renema J J, Frucci G, Zhou Z, Mattioli F, Gaggero A, Leoni R, de Dood M J A, Fiore A, van Exter M P 2013 Phys. Rev. B 87 174526Google Scholar

    [49]

    Suzuki K, Shiki S, Ukibe M, Koike M, Miki S, Wang Z, Ohkubo M 2011 Appl. Phys. Express 4 083101Google Scholar

    [50]

    Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Huebers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar

    [51]

    Gurevich A, Vinokur V M 2008 Phys. Rev. Lett. 100 227007Google Scholar

    [52]

    Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y, Wang Z 2019 Chin. Phys. B 28 0785024

    [53]

    Caloz M, Korzh B, Timoney N, Weiss M, Gariglio S, Warburton R J, Schonenberger C, Renema J, Zbinden H, Bussieres F 2017 Appl. Phys. Lett. 110 0831064

    [54]

    Gaudio R, Renema J J, Zhou Z L, Verma V B, Lita A E, Shainline J, Stevens M J, Mirin R P, Nam S W, van Exter M P, de Dood M J A, Fiore A 2016 Appl. Phys. Lett. 109 0311014

    [55]

    Vodolazov D Y, Korneeva Y P, Semenov A V, Korneev A A, Goltsman G N 2015 Phys. Rev. B 92 1045039

    [56]

    Delacour C, Pannetier B, Villegier J C, Bouchiat V 2012 Nano Lett. 12 3501Google Scholar

    [57]

    Bezryadin A 2008 J. Phys-Condes. Matter 20 043202Google Scholar

    [58]

    Langer J S, Ambegaokar V 1967 Phys. Rev. 164 498Google Scholar

    [59]

    Gorkov L P 1958 Soviet Phys. Jetp-Ussr 7 505

    [60]

    McCumber D E, Halperin B I 1970 Phys. Rev. B-Solid State 1 1054Google Scholar

    [61]

    Giordano N 1988 Phys. Rev. Lett. 61 2137Google Scholar

    [62]

    Arutyunov K Y, Golubev D S, Zaikin A D 2008 Phys. Rep.-Rev. Sec. Phys. Lett. 464 1

    [63]

    Golubev D S, Zaikin A D 2001 Phys. Rev. B 64 014504Google Scholar

    [64]

    Zaikin A D, Golubev D S, vanOtterlo A, Zimanyi G T 1997 Phys. Rev. Lett. 78 1552Google Scholar

    [65]

    Mooij J E, Schon G 1985 Phys. Rev. Lett. 55 114Google Scholar

    [66]

    Astafiev O V, Ioffe L B, Kafanov S, Pashkin Y A, Arutyunov K Y, Shahar D, Cohen O, Tsai J S 2012 Nature 484 355Google Scholar

    [67]

    Constantino N G N, Anwar M S, Kennedy O W, Dang M Y, Warburton P A, Fenton J C 2018 Nanomaterials 8 442Google Scholar

    [68]

    Hriscu A M, Nazarov Y V 2011 Phys. Rev. B 83 174511Google Scholar

    [69]

    Buchler H P, Geshkenbein V B, Blatter G 2004 Phys. Rev. Lett. 92 067007Google Scholar

    [70]

    Mooij J E, Nazarov Y V 2006 Nat. Phys. 2 169Google Scholar

    [71]

    Webb W W, Warburton R J 1968 Phys. Rev. Lett. 20 461Google Scholar

    [72]

    Sivakov A G, Glukhov A M, Omelyanchouk A N, Koval Y, Muller P, Ustinov A V 2003 Phys. Rev. Lett. 91 267001Google Scholar

    [73]

    Ladan F R, Harrabi K, Rosticher M, Mathieu P, Maneval J P, Villard C 2008 J. Low Temp. Phys. 153 103Google Scholar

    [74]

    Fulton T A, Dunkleberger L N 1974 Phys. Rev. B 9 4760Google Scholar

    [75]

    Li P, Wu P M, Bomze Y, Borzenets I V, Finkelstein G, Chang A M 2011 Phys. Rev. Lett. 107 137004Google Scholar

    [76]

    Sahu M, Bae M H, Rogachev A, Pekker D, Wei T C, Shah N, Goldbart P M, Bezryadin A 2009 Nat. Phys. 5 503Google Scholar

    [77]

    Lukens J E, Warburton R J, Webb W W 1970 Phys. Rev. Lett. 25 1180Google Scholar

    [78]

    Newbower R S, Tinkham M, Beasley M R 1972 Phys. Rev. B 5 864Google Scholar

    [79]

    Bezryadin A, Lau C N, Tinkham M 2000 Nature 404 971Google Scholar

    [80]

    Lau C N, Markovic N, Bockrath M, Bezryadin A, Tinkham M 2001 Phys. Rev. Lett. 87 217003Google Scholar

    [81]

    Elmurodov A K, Peeters F M, Vodolazov D Y, Michotte S, Adam S, de Horne F d M, Piraux L, Lucot D, Mailly D 2008 Phys. Rev. B 78 214519Google Scholar

    [82]

    Zhao W W, Liu X, Chan M H W 2016 Nano Lett. 16 1173Google Scholar

    [83]

    Zhang L B, Yan X C, Jia X Q, Chen J, Kang L, Wu P H 2017 Appl. Phys. Lett. 110 0726025

    [84]

    Lyatti M, Wolff M A, Gundareva I, Kruth M, Ferrari S, Dunin-Borkowski R E, Schuck C 2020 Nat. Commun. 11 763Google Scholar

    [85]

    Madan I, Buh J, Baranov V V, Kabanov V V, Mrzel A, Mihailovic D 2018 Sci. Adv. 4 eaao0043Google Scholar

    [86]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [87]

    Renema J J, Wang Q, Gaudio R, Komen I, Op't Hoog K, Sahin D, Schilling A, van Exter M P, Fiore A, Engel A, de Dood M J A 2015 Nano Lett. 15 4541Google Scholar

    [88]

    Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 2511053

    [89]

    Engel A, Lonsky J, Zhang X F, Schilling A 2015 IEEE Trans. Appl. Supercond. 25 2200407

  • 图 1  热点模型的发展 (a)超导铅膜对激光敏感的实验[38]. 上方是激光脉冲, 下方是超导铅膜的电阻变化曲线, 可以发现激光辐照时, 铅膜的电阻值突然增加; (b)超导微桥中不同大小的热点温度分布示意图[39], 超导微桥采用锡膜制备; (c)超导氮化铌薄膜吸收光子时能量的平衡过程[40]

    Fig. 1.  The development of hot spot model: (a) The experiment of superconducting lead film which is sensitive to laser[38]. The curve above is the laser pulse and the curve below is the resistance curve of the superconducting lead film. The resistance of the lead film increases suddenly when laser irradiates on it; (b) temperature distribution of hot spots with different sizes in superconducting microbridge fabricated of tin film[39]; (c) energy balance of the superconducting niobium nitride film absorbing photons[40].

    图 2  Gol'tsman等[9]于2001年首次制备出SNSPD, 将热点模型应用在解释其光子响应, (a)—(d)分别表示光子入射、热点形成、热点长大、纳米线全部失超

    Fig. 2.  Gol'tsman et al[9]. fabricated SNSPD for the first time in 2001, and applied the hot spot model to explain its photon response. (a)–(d) denote photon incidence, hot spot formation, hot spot growth and thoroughly shut down of the nanowire, respectively.

    图 3  涡旋模型的发展 (a), (b)涡旋周围的超导电流分布[33], (a)单个涡旋将电流挤压到周围, 中间的超导态被抑制, (b)涡旋-反涡旋对, 可能形成于较高的偏置电流; (c), (d)基于涡旋穿越的超导薄膜耗散机制[45], (c)单涡旋穿越, (d)光子辅助涡旋穿越模型. 两种耗散都可以使SNSPD产生可观测的电压响应; (e)上图表示没有光子时, 涡旋穿越导致暗计数形成; 下图表示光子入射导致局部热点形成, 随后引发涡旋穿越导致响应[46]

    Fig. 3.  The development of the vortex-based model: (a), (b) The supercurrent distribution around the vortex[33], (a) current diverting around the region with depressed superconductivity on the scale of the vortex-core area, (b) closely spaced vortex pair oriented properly in near-critical applied current; (c), (d) sketch of a segment of the strip in the presence of a bias current[45], (c) a single vortex causes a hot crossing, (d) A single photon creates a hotspot and induces a subsequent hot vortex crossing. Both processes result in detectable voltage in SNSPD; (e) Top: thermally excited vortex crossing and subsequent formation of a normal-state hot belt across the strip width resulting in a dark count. Bottom: an incident photon creates a hot spot across the superconducting strip, followed by the thermally induced vortex crossing[46].

    图 4  不同理论之间的讨论 (a)探测器层析法得到的SNSPD响应归一化曲线, 不同符号代表了不同的光子数响应模式和不同的入射波长[48]; (b)热点模型、扩散热点模型和涨落协助模型对实验的拟合结果, 结果显示扩散热点模型具有最好的拟合效果[48]; (c)不同模型对实验数据的拟合曲线, 结果表明扩散热点模型是最有可能的结果[35]

    Fig. 4.  Discussions on various theories: (a) The universial detection curve of SNSPD utilizing the detector tomography, different symbols representing corresponding photon number and wavelength[48]; (b) the fit of experimental data of the diffusion hotspot model, the normal-core hotspot model and the fluctuation model. It turns out that the diffusion hotspot model fits best to the data[48]; (c) different models fitting to the experimental data and the diffusion hot spot model turns out to be the most probable one[35].

    图 5  热激发相位滑移 (a)复变函数Ψ(x)随x的变化. 这是2种可能情况: A点附近, Ψ1(x)在复平面上环绕一周, Ψ0(x)没有发生环绕[36]; (b)两种主要的相位滑移过程: TAPS(蓝色部分, 自由能翻越势垒)和QPS(红色部分, 自由能隧穿势垒); (c)自由能F与波矢k的关系. 当不存在电流时势垒是对称的, 都等于∆F0. 当有电流在纳米线中流动时, 相位滑移势垒将变得不再对称

    Fig. 5.  Thermally activated phase slips: (a) The order parameter Ψ(x) which is complex is drawn as a function of position. Two possible confgurations are shown. Near A, Ψ1(x) makes an excursion round the Argand diagram while Ψ0(x) does not[36]; (b) two major processes of phase slip, the TAPS (blue line, the free energy changes it’s quantuam state by jumping over the energy barrier) and the QPS (red line, the free energy changes it’s quantuam state by tunneling to another potential minimum); (c) free energy F and wave vector k. In the absence of bias current, the energy barrier between adjacent energy minima is identical and equal to ∆F0. The barrier becomes asymmetric at a small current.

    图 6  相位滑移过程的时空变化 (a)幅值变化; (b)是相位变化. 在τ = 0时, 序参量的幅值变为0, 相位发生2π的改变

    Fig. 6.  Temporal-spacial evolution of the phase slip: (a) Amplitute evolution; (b) phase evolution. The absolute value of the order parameter is suppressed to zero allowing the phase to flip by 2π at τ = 0.

    图 7  CQPS和PSC (a)超导纳米线的电流存在一个大约为300 µV的临界电压, 这预示着CQPS现象[67]; (b)相位滑移中心在I-V曲线中的体现, 虚线所对应的电阻值是Rq的整数倍[67]

    Fig. 7.  The CQPS and PSC: (a) No current is measured below the critical voltage Vc ≈ 300 µV, and this behaviour is suggestive of the presence of coherent quantum phase slip[67]; (b) PSC in the I-V curve of the SNSPD. The resistance corresponding to the dotted line is integral multiple of quantum resistance Rq[67].

    图 8  实验中通过P(I)分布获得Г(I)[74]

    Fig. 8.  Acquiring Г(I) by measuring the distribution of P(I)[74].

    图 9  相位滑移早期实验 (a)Lukens等[77]在锡晶须上测量的R-T数据, 虚线是根据TAPS公式拟合的结果; (b)在临近Tc的温度测量超导线的I-V曲线, 呈现出双曲正弦关系[77]; (c)Giordano[61]首次观察到In超导线的R-T曲线偏离TAPS的行为, 并称之为QPS现象

    Fig. 9.  Early experiments on phase slip: (a) R-T measurement of the tin whisker, and the dotted line is the result of TAPS fitting[77]; (b) current-voltage characteristics at fixed temperature. Solid line, V = sinhI/2I1; closed circles, data points[77]; (c) Giordano[61] observed the R-T curve of In nanowire diviated from the TAPS theory for the first time and named this phenomenon quantum phase slip.

    图 10  近期相位滑移实验进展 (a)随着纳米线长度的增加, 相位滑移的频率同时增加, 黑色线是电流源偏置, 灰色是电压源偏置[81]; (b)铝纳米线Ic的标准差随温度变化明显分为3个区域, 分别对应于QPS、单TAPS和多TAPS过程[75]; (c)随着外加磁场和电流的改变, Nb纳米线的R-T曲线出现了分离的电阻值, 可能是纳米线的一部分区域产生了相位滑移中心, 而其他区域仍然保持为超导态[82]

    Fig. 10.  Current experiments on phase slip: (a) The phase slip rate increases with the increase of length of the nanowire. Black line: current source mode, grey line, voltage source mode[81]; (b) the standard deviation of the Ic of the Al nanowire is distributed into three distinct temperature zones, corresponding to QPS, single TAPS and multi-TAPS, respectively[75]; (c) the R-T curves of the Nb nanowire are splitted into different resistance with the change of the current and magnetic field, which may be caused by the phase slip centers emerging in some area of the nanowire[82].

    图 11  YBCO纳米线中能级量子化现象, 并提出了SNSPD光子探测的相位滑移解释[84]

    Fig. 11.  Energy level quantification in the YBCO nanowire, and the phase-slip based photon detection mechanism of SNSPD is proposed[84].

    表 1  热点模型、涡旋模型、相位滑移模型特点总结

    Table 1.  The summary of the hot spot model, vortex-based model and phase-slip-based model

    模型名称基本内容适用范围特点不足
    热点模型纳米线吸收光子形成热点, 热点在电流作用下长大, 破坏超导电性适用于光子波长较短、
    能量较强的情况
    唯象模型, 基于热力学,
    理论体系完备
    存在截止波长, 但是在
    实验上并未发现
    涡旋模型光子入射形成涡旋或者VAP, 涡旋穿越纳米线, 破坏超导电性适用于光子波长较长、
    能量较弱的情况
    基于电磁学理论, 发
    展较为成熟
    存在尺寸效应: 一般认为,
    宽度小于4.41ξ的弱连
    接中不存在涡旋
    相位滑移模型光子入射使相位滑移事件大量发生, 破坏了纳米线的超导电性从短波到长波光
    子均适用
    基于量子力学, 能解释
    宽光谱、窄线条的
    光子响应
    发展较晚, 还未形成完
    备的理论体系
    下载: 导出CSV
  • [1]

    Onnes H K 1911 Commun. Phys. Lab. Univ. Leiden 120b 1479

    [2]

    Meissner W, Ochsenfeld R 1933 Naturwissenschaften 21 787

    [3]

    Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175Google Scholar

    [4]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [5]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [6]

    石晴, 林镇辉, 杨瑾屏, 李婧, 史生才 2017 微波学报 S1 266

    Shi Q, Lin Z H, Yang J P, Li J, Shi S C 2017 J. Microwaves S1 266

    [7]

    Huang H B, Wu Y, Wang J, Bian Y B, Wang X, Li G Q, Zhang X Q, Li C G, Sun L, He Y S 2018 Physica C 550 78Google Scholar

    [8]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [9]

    Gol'tsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C, Sobolewski R 2001 Appl. Phys. Lett. 79 705Google Scholar

    [10]

    Reddy D V, Nerem R R, Nam S W, Mirin R P, Verma V B 2020 Optica 7 1649Google Scholar

    [11]

    Hu P, Li H, You L X, Wang H Q, Xiao Y, Huang J, Yang X Y, Zhang W J, Wang Z, Xie X M 2020 Opt. Express 28 36884Google Scholar

    [12]

    J. Chang, J. W. N. Los, J. O. Tenorio-Pearl, N. Noordzij, R. Gourgues, A. Guardiani, J. R. Zichi, S. F. Pereira, H. P. Urbach, V. Zwiller, S. N. Dorenbos, and I. Esmaeil Zedeh 2021 APL Photonics 6 036114Google Scholar

    [13]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Pena C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [14]

    Hadfield R H, Habif J L, Schlafer J, Schwall R E, Nam S W 2006 Appl. Phys. Lett. 89 241129Google Scholar

    [15]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [16]

    Stevens M J, Hadfield R H, Schwall R E, Nam S W, Mirin R P, Gupta J A 2006 Appl. Phys. Lett. 89 031109Google Scholar

    [17]

    Hadfield R H, Stevens M J, Gruber S S, Miller A J, Schwall R E, Mirin R P, Nam S W 2005 Opt. Express 13 10846Google Scholar

    [18]

    Robinson B S, Kerman A J, Dauler E A, Barron R O, Caplan D O, Stevens M L, Carney J J, Hamilton S A, Yang J K W, Berggren K K 2006 Opt. Lett. 31 444Google Scholar

    [19]

    Zhang B, Guan Y Q, Xia L H, Dong D X, Chen Q, Xu C, Wu C, Huang H X, Zhang L B, Kang L, Chen J, Wu P H 2021 Supercond. Sci. Technol. 34 034005

    [20]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848Google Scholar

    [21]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [22]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, Jiang X, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460

    [23]

    Chi X M, Zou K, Gu C, Zichi J, Cheng Y H, Hu N, Lan X J, Chen S F, Lin Z Z, Zwiller V, Hu X L 2018 Opt. Lett. 43 5017Google Scholar

    [24]

    张蜡宝, 钟扬音, 康琳, 陈健, 吉争鸣, 许伟伟, 曹春海 2008 科学通报 53 0023Google Scholar

    Zhang L B, Zhong Y L, Kang L, Chen J, Ji Z M, Xu W W, Cao C H 2008 Chinese Sci. Bull. 53 0023Google Scholar

    [25]

    Chen Q, Ge R, Zhang L B, Li F Y, Zhang B, Jin F F, Han H, Dai Y, He G L, Fei Y, Wang X H, Wang H, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2021 Sci. Bull.

    [26]

    张海涛, 李祝莲, 汤儒峰, 翟东升, 李荣旺, 皮晓宇, 伏红林, 李语强 2020 红外与激光工程 49 1007

    Zhang H T, Li Z L, Tang R F, Zhai D S, Li R W, Pi X Y, Fu H L, Li Y Q 2020 Infrared Laser Eng. 49 1007

    [27]

    高添泉, 张才士, 李明, 李语强, 韩西达, 练军想, 刘胜前, 黎樽彪, 涂良成, 吴先霖, 杨山清, 叶贤基, 闫勇, 张蜡宝, 张鸿博, 张锦绣, 周立祥, 赵勇志, 赵宏超 2021 中山大学学报 60 247

    Gao T Q, Zhang C S, Li M, Li Y Q, Han X D, Lian J X, Liu S Q, Li Z B, Tu L C, Wu X L, Yang S Q, Ye X J, Yan Y, Zhang L B, Zhang H B, Zhang J X, Zhou L X, Zhao Y Z, Zhao H C 2021 J. Sun Yat-Sen Univ. 60 247

    [28]

    Zhu J, Chen Y J, Zhang L B, Jia X Q, Feng Z J, Wu G H, Yan X C, Zhai J Q, Wu Y, Chen Q, Zhou X Y, Wang Z Z, Zhang C, Kang L, Chen J, Wu P H 2017 Sci. Rep. 7 15113Google Scholar

    [29]

    Yu J, Zhang R L, Gao Y F, Sheng Z H, Gu M, Sun Q C, Liao J L, Wu T, Lin Z Y, Wu P H, Kang L, Li H, Zhang L B, Zheng W 2020 Opt. Lett. 45 394684

    [30]

    张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨 2016 物理学报 65 188501Google Scholar

    Zhang S, Tao X, Feng Z J, Wu G H, Xue L, Yan X C, Zhang L B, Jia X Q, Wang Z Z, Sun J, Dong G Y, Kang L, Wu P H 2016 Acta Phys. Sin. 65 188501Google Scholar

    [31]

    Semenov A D, Gol'tsman G N, Korneev A A 2001 Physica C 351 349Google Scholar

    [32]

    Semenov A, Engel A, Hubers H W, Il'in K, Siegel M 2005 Eur. Phys. J. B 47 495Google Scholar

    [33]

    Kadin A M, Leung M, Smith A D 1990 Phys. Rev. Lett. 65 3193Google Scholar

    [34]

    Likharev K K 1979 Rev. Mod. Phys. 51 101Google Scholar

    [35]

    Renema J J, Gaudio R, Wang Q, Zhou Z, Gaggero A, Mattioli F, Leoni R, Sahin D, de Dood M J A, Fiore A, van Exter M P 2014 Phys. Rev. Lett. 112 117604Google Scholar

    [36]

    Little W A 1967 Phys. Rev. 156 396Google Scholar

    [37]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Supercond. Sci. Technol. 25 06300116

    [38]

    Testardi L R 1971 Phys. Rev. B 4 2189Google Scholar

    [39]

    Skocpol W J, Beasley M R, Tinkham M 1974 J. Appl. Phys. 45 4054Google Scholar

    [40]

    Semenov A D, Nebosis R S, Gousev Y P, Heusinger M A, Renk K F 1995 Phys. Rev. B 52 581Google Scholar

    [41]

    Kadin A M, Johnson M W 1996 Appl. Phys. Lett. 69 3938Google Scholar

    [42]

    Yang J K W, Kerman A J, Dauler E A, Anant V, Rosfjord K M, Berggren K K 2007 IEEE Trans. Appl. Supercond. 17 581Google Scholar

    [43]

    Vodolazov D Y 2017 Phys. Rev. Appl. 7 03401419

    [44]

    孙明娟, 刘要稳 2015 物理学报 64 247505Google Scholar

    Sun M J, Liu Y W 2015 Acta Phys. Sin. 64 247505Google Scholar

    [45]

    Bulaevskii L N, Graf M J, Batista C D, Kogan V G 2011 Phys. Rev. B 83 144526Google Scholar

    [46]

    Bulaevskii L N, Graf M J, Kogan V G 2012 Phys. Rev. B 85 014505Google Scholar

    [47]

    Marsili F, Bellei F, Najafi F, Dane A E, Dauler E A, Molnar R J, Berggren K K 2012 Nano Lett. 12 4799Google Scholar

    [48]

    Renema J J, Frucci G, Zhou Z, Mattioli F, Gaggero A, Leoni R, de Dood M J A, Fiore A, van Exter M P 2013 Phys. Rev. B 87 174526Google Scholar

    [49]

    Suzuki K, Shiki S, Ukibe M, Koike M, Miki S, Wang Z, Ohkubo M 2011 Appl. Phys. Express 4 083101Google Scholar

    [50]

    Hofherr M, Rall D, Ilin K, Siegel M, Semenov A, Huebers H W, Gippius N A 2010 J. Appl. Phys. 108 014507Google Scholar

    [51]

    Gurevich A, Vinokur V M 2008 Phys. Rev. Lett. 100 227007Google Scholar

    [52]

    Wang Y, Li H, You L X, Lv C L, Wang H Q, Zhang X Y, Zhang W J, Zhou H, Zhang L, Yang X Y, Wang Z 2019 Chin. Phys. B 28 0785024

    [53]

    Caloz M, Korzh B, Timoney N, Weiss M, Gariglio S, Warburton R J, Schonenberger C, Renema J, Zbinden H, Bussieres F 2017 Appl. Phys. Lett. 110 0831064

    [54]

    Gaudio R, Renema J J, Zhou Z L, Verma V B, Lita A E, Shainline J, Stevens M J, Mirin R P, Nam S W, van Exter M P, de Dood M J A, Fiore A 2016 Appl. Phys. Lett. 109 0311014

    [55]

    Vodolazov D Y, Korneeva Y P, Semenov A V, Korneev A A, Goltsman G N 2015 Phys. Rev. B 92 1045039

    [56]

    Delacour C, Pannetier B, Villegier J C, Bouchiat V 2012 Nano Lett. 12 3501Google Scholar

    [57]

    Bezryadin A 2008 J. Phys-Condes. Matter 20 043202Google Scholar

    [58]

    Langer J S, Ambegaokar V 1967 Phys. Rev. 164 498Google Scholar

    [59]

    Gorkov L P 1958 Soviet Phys. Jetp-Ussr 7 505

    [60]

    McCumber D E, Halperin B I 1970 Phys. Rev. B-Solid State 1 1054Google Scholar

    [61]

    Giordano N 1988 Phys. Rev. Lett. 61 2137Google Scholar

    [62]

    Arutyunov K Y, Golubev D S, Zaikin A D 2008 Phys. Rep.-Rev. Sec. Phys. Lett. 464 1

    [63]

    Golubev D S, Zaikin A D 2001 Phys. Rev. B 64 014504Google Scholar

    [64]

    Zaikin A D, Golubev D S, vanOtterlo A, Zimanyi G T 1997 Phys. Rev. Lett. 78 1552Google Scholar

    [65]

    Mooij J E, Schon G 1985 Phys. Rev. Lett. 55 114Google Scholar

    [66]

    Astafiev O V, Ioffe L B, Kafanov S, Pashkin Y A, Arutyunov K Y, Shahar D, Cohen O, Tsai J S 2012 Nature 484 355Google Scholar

    [67]

    Constantino N G N, Anwar M S, Kennedy O W, Dang M Y, Warburton P A, Fenton J C 2018 Nanomaterials 8 442Google Scholar

    [68]

    Hriscu A M, Nazarov Y V 2011 Phys. Rev. B 83 174511Google Scholar

    [69]

    Buchler H P, Geshkenbein V B, Blatter G 2004 Phys. Rev. Lett. 92 067007Google Scholar

    [70]

    Mooij J E, Nazarov Y V 2006 Nat. Phys. 2 169Google Scholar

    [71]

    Webb W W, Warburton R J 1968 Phys. Rev. Lett. 20 461Google Scholar

    [72]

    Sivakov A G, Glukhov A M, Omelyanchouk A N, Koval Y, Muller P, Ustinov A V 2003 Phys. Rev. Lett. 91 267001Google Scholar

    [73]

    Ladan F R, Harrabi K, Rosticher M, Mathieu P, Maneval J P, Villard C 2008 J. Low Temp. Phys. 153 103Google Scholar

    [74]

    Fulton T A, Dunkleberger L N 1974 Phys. Rev. B 9 4760Google Scholar

    [75]

    Li P, Wu P M, Bomze Y, Borzenets I V, Finkelstein G, Chang A M 2011 Phys. Rev. Lett. 107 137004Google Scholar

    [76]

    Sahu M, Bae M H, Rogachev A, Pekker D, Wei T C, Shah N, Goldbart P M, Bezryadin A 2009 Nat. Phys. 5 503Google Scholar

    [77]

    Lukens J E, Warburton R J, Webb W W 1970 Phys. Rev. Lett. 25 1180Google Scholar

    [78]

    Newbower R S, Tinkham M, Beasley M R 1972 Phys. Rev. B 5 864Google Scholar

    [79]

    Bezryadin A, Lau C N, Tinkham M 2000 Nature 404 971Google Scholar

    [80]

    Lau C N, Markovic N, Bockrath M, Bezryadin A, Tinkham M 2001 Phys. Rev. Lett. 87 217003Google Scholar

    [81]

    Elmurodov A K, Peeters F M, Vodolazov D Y, Michotte S, Adam S, de Horne F d M, Piraux L, Lucot D, Mailly D 2008 Phys. Rev. B 78 214519Google Scholar

    [82]

    Zhao W W, Liu X, Chan M H W 2016 Nano Lett. 16 1173Google Scholar

    [83]

    Zhang L B, Yan X C, Jia X Q, Chen J, Kang L, Wu P H 2017 Appl. Phys. Lett. 110 0726025

    [84]

    Lyatti M, Wolff M A, Gundareva I, Kruth M, Ferrari S, Dunin-Borkowski R E, Schuck C 2020 Nat. Commun. 11 763Google Scholar

    [85]

    Madan I, Buh J, Baranov V V, Kabanov V V, Mrzel A, Mihailovic D 2018 Sci. Adv. 4 eaao0043Google Scholar

    [86]

    Anant V, Kerman A J, Dauler E A, Yang J K W, Rosfjord K M, Berggren K K 2008 Opt. Express 16 10750Google Scholar

    [87]

    Renema J J, Wang Q, Gaudio R, Komen I, Op't Hoog K, Sahin D, Schilling A, van Exter M P, Fiore A, Engel A, de Dood M J A 2015 Nano Lett. 15 4541Google Scholar

    [88]

    Baek B, Lita A E, Verma V, Nam S W 2011 Appl. Phys. Lett. 98 2511053

    [89]

    Engel A, Lonsky J, Zhang X F, Schilling A 2015 IEEE Trans. Appl. Supercond. 25 2200407

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路. 物理学报, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 吴志鹏, 张创, 胡世谦, 马登科, 杨诺. 纳米“热点”系统中的梯度热导率. 物理学报, 2023, 72(18): 184401. doi: 10.7498/aps.72.20230687
    [4] 何广龙, 薛莉, 吴诚, 李慧, 印睿, 董大兴, 王昊, 徐迟, 黄慧鑫, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 夏凌昊, 张蜡宝, 吴培亨. 面向机载平台的小型超导单光子探测系统. 物理学报, 2023, 72(9): 098501. doi: 10.7498/aps.72.20230248
    [5] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [6] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [7] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [8] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [9] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [10] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [11] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [12] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [13] 史良马, 周明健, 朱仁义. 磁场作用下超导圆环的涡旋演化. 物理学报, 2014, 63(24): 247501. doi: 10.7498/aps.63.247501
    [14] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [15] 孟庆端, 张晓玲, 张立文, 吕衍秋. 128× 128 InSb探测器结构模型研究. 物理学报, 2012, 61(19): 190701. doi: 10.7498/aps.61.190701
    [16] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究. 物理学报, 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [17] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [18] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解. 物理学报, 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [19] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, 1988, 37(8): 1267-1274. doi: 10.7498/aps.37.1267
    [20] 赵忠贤, 刘福绥, 韩汝珊. 复合颗粒超导体的壳层模型. 物理学报, 1979, 28(2): 222-228. doi: 10.7498/aps.28.222
计量
  • 文章访问数:  11856
  • PDF下载量:  403
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-04
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回