搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性分子摆动态的三体量子关联

李艳杰 刘金明

引用本文:
Citation:

极性分子摆动态的三体量子关联

李艳杰, 刘金明

Tripartite quantum correlations of polar molecules in pendular states

Li Yan-Jie, Liu Jin-Ming
PDF
导出引用
  • 极性分子具有较长的相干时间和较强的偶极-偶极相互作用,因此它被视为量子信息处理的有效量子载体. 基于分子摆动态作为量子比特,研究了处于热平衡状态下三极性分子线性链系统的三体量子关联特性,分析了三体负性熵纠缠度、测量诱导扰动和三体量子失协随与电场强度、分子电偶极矩、分子转动常数、偶极-偶极相互作用和温度等参数有关的三个无量纲变量之间的变化关系. 研究表明:在其他参数给定的情况下,随电场强度的增加,三体量子关联均变小;随偶极-偶极相互作用强度的增大,三体量子关联先增加到峰值再逐渐变小;温度越高,负性熵纠缠度和三体量子失协越小,但测量诱导扰动随温度的改变在电场强度和偶极-偶极相互作用影响下呈现不同的变化趋势. 此外,通过调节电场强度、偶极-偶极相互作用和温度,可改变与操控极性分子摆动态的三体量子关联.
    Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus are regarded as a promising quantum carrier for quantum information processing. In this paper, by employing the pendular states of polar molecules as qubit, we investigate the properties of three types of tripartite quantum correlations for three linear polar molecules and numerically analyze the relations of tripartite negativity, measurement-induced disturbance (MID), and tripartite quantum discord (TQD) to three dimensionless reduced variables that relate to external field strength, dipole moment, rotational constant, dipole-dipole coupling, and temperature. The result shows that if the values of the other parameters are fixed, the three quantum correlations decrease with the increase of the field strength, and the three quantum correlations first increase to their respective maxima and then diminish gradually as the dipole-dipole coupling becomes larger. Moreover, as the temperature increases, both tripartite negativity and TQD become small, but with the variation of temperature there exhibit different evolution tendencies for MID between the influence of the electric field strength and that of the dipole-dipole coupling. In addition, the three quantum correlations of polar molecules in pendular state can be manipulated by tuning the external electric field strength, dipole-dipole coupling, and temperature.
    • 基金项目: 国家自然科学基金(批准号:11174081,11034002,11134003,11104075)和国家重点基础研究发展计划(批准号:2011CB921602,2012CB821302)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174081, 11034002, 11134003, 11104075) and the National Basic Research Program of China (Grant Nos. 2011CB921602, 2012CB821302).
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [5]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [6]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [7]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [10]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [11]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [12]

    Luo S 2008 Phys. Rev. A 77 022301

    [13]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [14]

    Luo S, Fu S 2010 Phys. Rev. A 82 034302

    [15]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501

    [16]

    Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501

    [17]

    Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310

    [18]

    Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103

    [19]

    Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101

    [20]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [21]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [22]

    Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677

    [23]

    Hu M L, Fan H 2012 Ann. Phys. 327 851

    [24]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [25]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [26]

    Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310

    [27]

    Qiu L, Ye B 2014 Chin. Phys. B 23 050304

    [28]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7

    [29]

    Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403

    [30]

    Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419

    [31]

    Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [33]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [34]

    Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890

    [35]

    Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401

    [36]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [37]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [38]

    Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501

    [39]

    Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801

    [40]

    Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414

    [41]

    Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301

    [42]

    Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107

    [43]

    Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104

    [44]

    Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)

    [2]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [3]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [4]

    Vidal G, Werner R F 2002 Phys. Rev. A 65 032314

    [5]

    Bennett C H, DiVincenzo D P, Smolin J A, Wootters W K 1996 Phys. Rev. A 54 3824

    [6]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [7]

    Hill S, Wootters W K 1997 Phys. Rev. Lett. 78 5022

    [8]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [9]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [10]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [11]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

    [12]

    Luo S 2008 Phys. Rev. A 77 022301

    [13]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [14]

    Luo S, Fu S 2010 Phys. Rev. A 82 034302

    [15]

    Modi K, Paterek T, Son W, Vedral V, Williamson M 2010 Phys. Rev. Lett. 104 080501

    [16]

    Giorgi G L, Bellomo B, Galve F, Zambrini R 2011 Phys. Rev. Lett. 107 190501

    [17]

    Buscemi F, Bordone P 2013 Phys. Rev. A 87 042310

    [18]

    Werlang T, Souza S, Fanchini F F, Boas C J V 2009 Phys. Rev. A 80 024103

    [19]

    Wang B, Xu Z Y, Chen Z Q, Feng M 2010 Phys. Rev. A 81 014101

    [20]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [21]

    Yang Y, Wang A M 2013 Acta Phys. Sin. 62 130305 (in Chinese) [杨阳, 王安民 2013 物理学报 62 130305]

    [22]

    Guo H, Liu J M, Zhang C J, Oh C H 2012 Quantum Inf. Comput. 12 0677

    [23]

    Hu M L, Fan H 2012 Ann. Phys. 327 851

    [24]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [25]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [26]

    Shen C G, Zhang G F, Fan K M, Zhu H J 2014 Chin. Phys. B 23 050310

    [27]

    Qiu L, Ye B 2014 Chin. Phys. B 23 050304

    [28]

    Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B, Guo G C 2010 Nat. Commun. 1 7

    [29]

    Auccaise R, Celeri L C, Soares-Pinto D O, de Azevedo E R, Maziero J, Souza A M, Bonagamba T J, Sarthour R S, Oliveira I S, Serra R M 2011 Phys. Rev. Lett. 107 140403

    [30]

    Rong X, Jin F, Wang Z, Geng J, Ju C, Wang Y, Zhang R, Duan C, Shi M, Du J 2013 Phys. Rev. B 88 054419

    [31]

    Krems R, Friedrich B, Stwalley W C 2009 Cold Molecules: Theory, Experiment, Applications (London: Taylor Francis)

    [32]

    Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049

    [33]

    Dulieu O, Gabbanini C 2009 Rep. Prog. Phys. 72 086401

    [34]

    Ulmanis J, Deiglmayr J, Repp M, Wester R, Weidemuller M 2012 Chem. Rev. 112 4890

    [35]

    Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y, Yin J P 2011 Phys. Rev. Lett. 106 140401

    [36]

    DeMille D 2002 Phys. Rev. Lett. 88 067901

    [37]

    Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636

    [38]

    Tordrup K, Negretti A, Molmer K 2008 Phys. Rev. Lett. 101 040501

    [39]

    Chen Q, Yang W, Feng M 2012 Phys. Rev. A 86 045801

    [40]

    Charron E, Milman P, Keller A, Atabek O 2007 Phys. Rev. A 75 033414

    [41]

    Kuznetsova E, Gacesa M, Yelin S F, Cote R 2010 Phys. Rev. A 81 030301

    [42]

    Wei Q, Kais S, Friedrich B, Herschbach D 2011 J. Chem. Phys. 134 124107

    [43]

    Zhu J, Kais S, Wei Q, Herschbach D, Friedrich B 2013 J. Chem. Phys. 138 024104

    [44]

    Sabin C, Garcia-Alcaine G 2008 Eur. Phys. J. D 48 43

  • [1] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [2] 毛丽君, 张云波. 三量子比特Dicke模型中的两体和三体纠缠动力学. 物理学报, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [3] 任杰, 顾利萍, 尤文龙. 带有三体相互作用的S=1自旋链中的保真率和纠缠熵. 物理学报, 2018, 67(2): 020302. doi: 10.7498/aps.67.20172087
    [4] 程景, 单传家, 刘继兵, 黄燕霞, 刘堂昆. Tavis-Cummings模型中的几何量子失协特性. 物理学报, 2018, 67(11): 110301. doi: 10.7498/aps.67.20172699
    [5] 赖志慧, 冷永刚. 三稳系统的动态响应及随机共振. 物理学报, 2015, 64(20): 200503. doi: 10.7498/aps.64.200503
    [6] 王丹琴, 何创创. 双自旋系统中的量子失协问题研究. 物理学报, 2015, 64(4): 043403. doi: 10.7498/aps.64.043403
    [7] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [8] 李锐奇, 卢道明. 原子与耦合腔相互作用系统中的量子失协. 物理学报, 2014, 63(3): 030301. doi: 10.7498/aps.63.030301
    [9] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [10] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [11] 卢道明. 耦合腔系统中的三体纠缠演化. 物理学报, 2012, 61(18): 180301. doi: 10.7498/aps.61.180301
    [12] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [13] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [14] 李耀义, 程木田, 周慧君, 刘绍鼎, 王取泉, 薛其坤. 脉冲激发三能级体系半导体量子点的单光子发射效率. 物理学报, 2006, 55(4): 1781-1786. doi: 10.7498/aps.55.1781
    [15] 刘成周. 动态广义球对称含荷黑洞的量子熵. 物理学报, 2005, 54(5): 1977-1981. doi: 10.7498/aps.54.1977
    [16] 孙鸣超. (2+1)维动态黑洞的量子熵. 物理学报, 2004, 53(6): 1665-1668. doi: 10.7498/aps.53.1665
    [17] 左战春, 夏云杰. Tavis-Cummings模型中三体纠缠态纠缠量的演化特性. 物理学报, 2003, 52(11): 2687-2693. doi: 10.7498/aps.52.2687
    [18] 刘承师, 马本堃. 在强交变电场驱动下线形三量子点分子中激子的动态局域化行为. 物理学报, 2003, 52(8): 2027-2032. doi: 10.7498/aps.52.2027
    [19] 竺 云, 王太宏. 量子点器件的三端电测量研究. 物理学报, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [20] 朱建阳. 诱导引力理论中宇宙场的三次量子化. 物理学报, 1995, 44(9): 1489-1497. doi: 10.7498/aps.44.1489
计量
  • 文章访问数:  4223
  • PDF下载量:  457
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-16
  • 修回日期:  2014-06-08
  • 刊出日期:  2014-10-05

/

返回文章
返回