搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷极性分子

鹿博 王大军

引用本文:
Citation:

超冷极性分子

鹿博, 王大军

Ultracold dipolar molecules

Lu Bo, Wang Da-Jun
PDF
HTML
导出引用
  • 目前对超冷原子的研究已经从最初的原子分子物理扩展到了物理的很多分支. 极性分子可以将电偶极相互作用引入到超冷体系, 同时分子又与原子类似, 可以灵活地被光和其他电磁场操控, 因而很多理论工作都预言了超冷极性分子在超冷化学、量子模拟和量子信息等领域会有重要的应用. 但由于超冷基态分子的制备非常困难, 如何把超冷物理从原子发展到分子还是一个方兴未艾的课题. 过去的10年间, 各种分子冷却技术都取得了很大突破, 本文回顾了这些进展, 并着重介绍了基于异核冷原子的磁缔合结合受激拉曼转移这一技术, 该技术在制备高密度的基态碱金属超冷极性分子上取得了较大的成功. 本文也总结了超冷极性碱金属分子基本碰撞特性研究的一些实验结果.
    The research field of ultracold atoms has expanded from atomic and molecular physics to a variety of fields. Ultracold polar molecules have long range and anisotropic dipole-dipole interactions, and similar to atoms, can also be conveniently manipulated by laser and other electromagnetic fields. Thus, ultracold molecules offer promising applications such as ultracold chemistry, quantum simulation, and quantum information. However, due to the difficulty in creating ultracold ground state molecules, expanding the horizon of ultracold physics from atoms to molecules is still under development. In the past decade, many research groups have successfully created bi-alkali rovibrational ground state polar molecules using magneto association and stimulated Raman adiabatic passage (STIRAP). This paper presents a review of the recent progress including creating and manipulating ultracold molecules with this method, and the collision property of molecules at ultracold temperature.
      通信作者: 王大军, djwang@cuhk.edu.hk
    • 基金项目: 国家重点基础研究发展计划(批准号: 2014CB921403)和香港研究资助局GRF(批准号: CUHK14301815)资助的课题.
      Corresponding author: Wang Da-Jun, djwang@cuhk.edu.hk
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB921403) and the RGC General Research Fund, China (Grant No. CUHK14301815).
    [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [3]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [4]

    Bohn J, Rey A, Ye J 2017 Science 357 1002Google Scholar

    [5]

    Baranov M, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [6]

    Moses S, Covey J, Miecnikowski M, Jin D, Ye J 2017 Nat. Phys. 13 13

    [7]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [8]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401Google Scholar

    [9]

    Trefzger C, Menotti C, Capogrosso-Sansone B, Lewenstein M 2011 J. Phys. B 44 193001Google Scholar

    [10]

    André A, DeMille D, Doyle J, Lukin M, Maxwell S, Rabl P, Schoelkopf R, Zoller P 2006 Nat. Phys. 2 636Google Scholar

    [11]

    Carr L, DeMille D, Krems R, Ye J 2009 New J. Phys. 11 055049Google Scholar

    [12]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [13]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [14]

    Lu M, Burdick N, Youn S, Lev B 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [15]

    Ni K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M, Bohn J, Ye J 2010 Nature 464 1324Google Scholar

    [16]

    Yi S, Li T, Sun C 2007 Phys. Rev. Lett. 98 260405Google Scholar

    [17]

    Gorshkov A, Manmana S, Chen G, Ye J, Demler E, Lukin M, Rey A 2011 Phys. Rev. Lett. 107 115301Google Scholar

    [18]

    Yao N, Gorshkov A, Laumann C, Läuchli A, Ye J, Lukin M 2013 Phys. Rev. Lett. 110 185302Google Scholar

    [19]

    Manmana S, Stoudenmire E, Hazzard K, Rey A, Gorshkov A 2013 Phys. Rev. B 87 081106Google Scholar

    [20]

    Shuman E, Barry J, DeMille D 2010 Nature 467 820Google Scholar

    [21]

    Hummon M, Yeo M, Stuhl B, Collopy A, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [22]

    Norrgard E, McCarron D, Steinecker M, Tarbutt M, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [23]

    Anderegg L, Augenbraun B, Bao Y, Burchesky S, Cheuk L, Ketterle W, Doyle J 2018 Nat. Phys. 14 890Google Scholar

    [24]

    Collopy A, Ding S, Wu Y, Finneran I, Anderegg L, Augenbraun B, Doyle J, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [25]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311Google Scholar

    [26]

    Marco L, Valtolina G, Matsuda K, Tobias W, Covey J, Ye J 2019 Science aau 7230

    [27]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S 2010 Phys. Rev. Lett. 105 203001Google Scholar

    [28]

    Takekoshi T, Debatin M, Rameshan R, Ferlaino F, Grimm R, Nägerl H, Sueur C, Hutson J, Julienne P, Kotochigova S, Tiemann E 2012 Phys. Rev. A 85 032506Google Scholar

    [29]

    Weinstein J, de Carvalho R, Guillet T, Friedrich B, Doyle J 1998 Nature 395 148Google Scholar

    [30]

    Maxwell S, Brahms N, de Carvalho R, Glenn D, Helton J, Nguyen S, Patterson D, Petricka J, DeMille D, Doyle J 2005 Phys. Rev. Lett. 95 173201Google Scholar

    [31]

    Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar

    [32]

    Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar

    [33]

    Bethlem H, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [34]

    Sawyer B, Stuhl B, Wang D, Yeo M, Ye J 2008 Phys. Rev. Lett. 101 203203Google Scholar

    [35]

    Xia Y, Yin Y, Chen H, Deng L, Yin J 2008 Phys. Rev. Lett. 100 043003Google Scholar

    [36]

    Yin Y, Xu S, Xia M, Xia Y, Yin J 2018 Phys. Rev. A 97 043403Google Scholar

    [37]

    Huang Y, Xu S, Yang X 2016 J. Phys. B: At. Mol. Opt. Phys. 49 135101Google Scholar

    [38]

    Rosa M 2004 Eur. Phys. J. D 31 395Google Scholar

    [39]

    Stuhl B, Sawyer B, Wang D, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [40]

    Williams H, Caldwell L, Fitch N, Truppe S, Rodewald J, Hinds E, Sauer B, Tarbutt M 2018 Phys. Rev. Lett. 120 163201Google Scholar

    [41]

    Cheuk L, Anderegg L, Augenbraun B, Bao Y, Burchesky S, Ketterle W, Doyle J 2018 Phys. Rev. Lett. 121 083201Google Scholar

    [42]

    Jones K, Tiesinga E, Lett P, Julienne P 2006 Rev. Mod. Phys. 78 483Google Scholar

    [43]

    Liu W, Wu J, Ma J, Li P, Sovkov V, Xiao L, Jia S 2016 Phys. Rev. A 94 032518Google Scholar

    [44]

    Wu J, Liu W, Wang X, Ma J, Li D, Sovkov V, Xiao L, Jia S 2018 J. Chem. Phys. 148 174304Google Scholar

    [45]

    Ni K, Ospelkaus S, Miranda M, Péer A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D, Ye J 2008 Science 322 231Google Scholar

    [46]

    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J, Sueur C, Dulieu O, Ferlaino F, Grimm R, Nägerl H 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [47]

    Molony P, Gregory P, Ji Z, Lu B, Köppinger M, Sueur C, Blackley C, Hutson J, Cornish S 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [48]

    Park J, Will S, Zwierlein M 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [49]

    Seeßelberg F, Luo X, Li M, Bause R, Kotochigova S, Bloch I, Gohle C 2018 Phys. Rev. Lett. 121 253401Google Scholar

    [50]

    Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O, Wang D 2016 Phys. Rev. Lett. 116 205303Google Scholar

    [51]

    Yang H, Zhang D, Liu L, Liu Y, Nan J, Zhao B, Pan J 2019 Science 363 261Google Scholar

    [52]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [53]

    Wang F, Xiong D, Li X, Wang D, Tiemann E 2013 Phys. Rev. A 87 050702Google Scholar

    [54]

    Guo M, Vexiau R, Zhu B, Lu B, Bouloufa-Maafa N, Dulieu O, Wang D 2017 Phys. Rev. A 96 052505Google Scholar

    [55]

    Aikawa K, Akamatsu D, Kobayashi J, Ueda M, Kishimoto T, Inouye S 2009 New J. Phys. 11 055035Google Scholar

    [56]

    Aikawa K, Kobayashi J, Oasa K, Kishimoto T, Ueda M, Inouye S 2011 Opt. Express 19 14479Google Scholar

    [57]

    Gregory P, Molony P, Köppinger M, Kumar A, Ji Z, Lu B, Marchant A, Cornish S 2015 New J. Phys. 17 055006Google Scholar

    [58]

    Vexiau R, Borsalino D, Lepers M, Orbán A, Aymar M, Dulieu O, Bouloufa-Maafa N 2017 Int. Rev. Phys. Chem. 36 709Google Scholar

    [59]

    Guo M, Ye X, He J, Quéméner G, Wang D 2018 Phys. Rev. A 97 020501Google Scholar

    [60]

    Lepers M, Vexiau R, Aymar M, Bouloufa-Maafa N, Dulieu O 2013 Phys. Rev. A 88 032709Google Scholar

    [61]

    Żuchowski P, Kosicki M, Kodrycka M, Soldán P 2013 Phys. Rev. A 87 022706Google Scholar

    [62]

    Byrd Jr J, Côté R 2010 Phys. Rev. A 82 010502Google Scholar

    [63]

    Ospelkaus S, Ni K, Wang D, Miranda M, Neyenhuis B, Quéméner G, Julienne P, Bohn J, Jin D, Ye J 2010 Science 327 853Google Scholar

    [64]

    Krems R 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [65]

    Quéméner G, Bohn J 2010 Phys. Rev. A 81 022702Google Scholar

    [66]

    Quéméner G, Bohn J, Petrov A, Kotochigova S 2011 Phys. Rev. A 84 062703Google Scholar

    [67]

    Jones K, Maleki S, Bize S, Lett P, Williams C, Richling H, Knöckel H, Tiemann E, Wang H, Gould P, Stwalley W 1996 Phys. Rev. A 54 R1006Google Scholar

    [68]

    Ye X, Guo M, González-Martínez M, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar

    [69]

    Guo M, Ye X, He J, González-Martínez M, Vexiau R, G Quéméner, Wang D 2018 Phys. Rev. X 8 041044

    [70]

    Söding J, Guéry-Odelin D, Desbiolles P, Ferrari G, Dalibard J 1998 Phys. Rev. Lett. 80 1869Google Scholar

    [71]

    Weber T, Herbig J, Mark M, Nägerl H, Grimm R 2003 Phys. Rev. Lett. 91 123201Google Scholar

    [72]

    Seto J, Roy R, Vergès J, Amiot C 2000 J. Chem. Phys. 113 3067Google Scholar

    [73]

    Pashov A, Docenko O, Tamanis M, Ferber R, Knöckel H, Tiemann E 2005 Phys. Rev. A 72 062505Google Scholar

    [74]

    Żuchowski P, Hutson J 2010 Phys. Rev. A 81 060703Google Scholar

    [75]

    Mayle M, Quéméner G, Ruzic B, Bohn J 2013 Phys. Rev. A 87 012709Google Scholar

    [76]

    Gao B 2010 Phys. Rev. Lett. 105 263203Google Scholar

    [77]

    Idziaszek Z, Julienne P 2010 Phys. Rev. Lett. 104 113202Google Scholar

    [78]

    González-Martínez M, Dulieu O, Larrégaray P, Bonnet L 2014 Phys. Rev. A 90 052716Google Scholar

    [79]

    Liu L, Hood J, Yu Y, Zhang J, Hutzler N, Rosenband T, Ni K 2018 Science 360 aar7797

    [80]

    Liu L, Zhang J, Yu Y, Hutzler N, Liu Y, Rosenband T, Ni K 2018 Science 360 900Google Scholar

    [81]

    Lam M 2017 Ph.D. Dissertation (Singapore: National University of Singapore)

    [82]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B, Anderegg L, Sedlack A, Doyle J 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [83]

    González-Martínez M, Bohn J, Quéméner G 2017 Phys. Rev. A 96 032718Google Scholar

    [84]

    Danzl J, Mark M, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J, Nägerl H 2010 Nat. Phys. 6 265Google Scholar

    [85]

    Doçaj A, Wall M, Mukherjee R, Hazzard K 2016 Phys. Rev. Lett. 116 135301Google Scholar

    [86]

    Chotia A, Neyenhuis B, Moses S, Yan B, Covey J, Foss-Feig M, Rey A, Jin D, Ye J 2012 Phys. Rev. Lett. 108 080405Google Scholar

    [87]

    Andreev V, Ang D, DeMille D, Doyle J, Gabrielse G, Haefner J, Hutzler N, Lasner Z, Meisenhelder C, O’Leary B, Panda C, West A, West E, Wu X 2018 Nature 562 355Google Scholar

    [88]

    Kozyryev I, Hutzler N 2017 Phys. Rev. Lett. 119 133002Google Scholar

  • 图 1  电场诱导23Na87Rb分子产生的有效电偶极矩

    Fig. 1.  The induced effective dipole moments of the first two rotational states versus the electric field (23Na87Rb).

    图 2  极性分子在电场中可以产生电偶极相互作用

    Fig. 2.  Dipole-dipole interaction between polar molecules in an external electric field.

    图 3  (a)Feshbach共振的两通道模型; (b)利用Feshbach共振进行磁缔合产生弱束缚分子

    Fig. 3.  (a) Two-channel model for a Feshbach resonance; (b) formation of a weakly bound Feshbach molecule by magnetoassociation.

    图 4  利用磁缔合制备23Na87Rb Feshbach分子 (a)磁场改变的时序; (b)分别在离解和不离解的情况下探测钠和铷原子[52]

    Fig. 4.  Creation of 23Na87Rb Feshbach molecule via magnetoassociation: (a) The magnetic field sequence; (b) absorption images of 23Na and 87Rb with and without dissociation procedure[52].

    图 5  23Na87Rb Feshbach分子的结合能随磁场的变化, 插图表示离共振越远, 分子的closed channel成分越多[52]

    Fig. 5.  Binding energy of 23Na87Rb Feshbach molecules versus magnetic field near 347.7 Gauss. The inset shows the closed-channel fraction of the Feshbach molecule versus magnetic field[52].

    图 6  异核碱金属双原子分子的电偶极矩和核间距(a0为玻尔半径)的关系, 图中红色空心三角为23Na87Rb分子

    Fig. 6.  Electric-dipole moment of heteronuclear molecules as a function of internuclear distance (a0 is the Bohr radius). The red up-pointing triangle is 23Na87Rb molecule.

    图 7  (a) 23Na87Rb分子的相关势能曲线; (b)分子中间激发态的超高分辨谱; (c)基态转动能级; 其中${{{X}}^1}{\Sigma ^ + }$${a^3}{\Sigma ^ + }$为电子的最低单重态和三重态, Feshbach分子处于这两个态的离解极限附近, 而振转基态则处于${{{X}}^1}{\Sigma ^ + }$态的底部; 作为受激拉曼转移中间态的能级为电子单重态${A^1}{\Sigma ^ + }$和三重态${b^3}\Pi$的混合态, 其超精细结构的劈裂可以被完全分辨

    Fig. 7.  (a) 23Na87Rb molecule potential energy curves and the two-photonRaman process forpopulation transfer, ${{{X}}^1}{\Sigma ^ + }$and ${a^3}{\Sigma ^ + }$are the lowest singlet and triplet state respectively; (b) high resolution one-photon spectrum of the transition from the Feshbach state to the intermediate level (singlet and triplet mixed vibrational levels of ${A^1}{\Sigma ^ + }$ and ${b^3}\Pi$), which hyperfine structure can be resolved; (c) two-photon spectroscopy of the 23Na87Rb vibrational ground state with two rotational states resolved.

    图 8  利用STIRAP制备23Na87Rb基态分子 (a) STIRAP过程中Feshbach分子数目随时间的变化; (b)同一实验中pump和dump激光器的拉比频率随时间的变化; 为了探测基态分子, 需要一个逆过程将分子从基态转移回Feshbach 能级[50]

    Fig. 8.  Creation of 23Na87Rb molecules in the rovibrational ground state via STIRAP: (a) Time evolution of the 23Na87Rb Feshbach molecule number during a round-trip STIRAP, the reversed STIRAP is necessary for detection; (b) the pump and dump beam Rabi frequency during the STIRAP pulse sequence[50].

    图 9  通过质心振荡运动测量基态23Na87Rb分子的囚禁频率

    Fig. 9.  Center-of-mass motion of the absolute ground-state molecules along the horizontal direction (Xc) and the vertical direction (Yc) in the optical dipole trap.

    图 10  基态23Na87Rb分子在直流电场中的Stark频移. 红色曲线为对数据点的拟合. 插图为有效电偶极矩和电场的关系[50]

    Fig. 10.  Stark shift of the rovibrational ground state 23Na87Rb molecule in electric field. The red curve is the fit to a model including contributions from several higher rotational levels. The inset shows the induced dipole moment vs the electric field with the currently accessible region marked by the shading area[50].

    图 11  (a) 基态23Na87Rb分子在340 Gauss磁场中的超精细结构, 其中$m_I^{{\rm{Na}}}$$m_I^{{\rm{Rb}}}$分别为23Na和87Rb原子核自旋的磁量子数, 能量最低的超精细结构为$m_I^{{\rm{Na}}}$ = $m_I^{{\rm{Rb}}}$ = 3/2的态(最右端); (b) 利用仔细选择的STIRAP参数, 可以充分分辨跃迁允许的所有超精细结构, 从而实现处于单一超精细能级分子的制备[50]

    Fig. 11.  (a) The calculated hyperfine Zeeman structures of the lowest rovibrational level of NaRb molecule at 340 Gauss, $m_I^{{\rm{Na}}}$ and $m_I^{{\rm{Rb}}}$ are nuclear spin projection of 23Na and 87Rb respectively; (b) two-photon spectrum obtained by dark resonance spectroscopy with six of the 16 hyperfine levels fully resolved[50].

    图 12  (a) 23Na87Rb分子的J = 0和J = 1转动态具有不同核自旋态的成分; (b)利用单光子微波(上), 和双光子微波(中和下)操控, 可以实现对转动能级和核自旋的操控[59]

    Fig. 12.  (a) 23Na87Rb molecule rotational states with J = 0, 1 consist of different nuclear spin components; (b) coherent manipulation with microwave pulses shows the observed Rabi oscillations for the three microwave transitions in (a)[59].

    图 13  (a) 40K87Rb分子和(b) 23Na87Rb分子体系两体反应的相关能级示意图, 两个基态40K87Rb分子间可以发生(6c)式中的化学反应, 两个基态23Na87Rb分子是化学稳定的, 将23Na87Rb分子制备到振动激发态, 可以允许化学反应发生

    Fig. 13.  Schematic energy-level diagram for chemical reactivity of (a) 40K87Rb molecules and (b) 23Na87Rb molecules. The schematic reaction coordinates for the 40K87Rb + 40K87Rb → 40K2 + 87Rb2 process is exothermic and thus allowed. But the same process is endothermic for 23Na87Rb and thus forbidden. For 23Na87Rb in the first excited rovibrational level (v = 1, J = 0), the same reaction is already exothermic and thus allowed.

    图 14  基态费米40K87Rb分子的碰撞研究 (a) 分子密度随时间的变化, 红色曲线为用(7)式做的两体损耗拟合, 从中可以提取出损耗速率常数$\beta$; (b) 几种不同情况下样品温度对$\beta$的影响[63]

    Fig. 14.  Inelastic collisions of fermionic 40K87Rb molecules in the rovibronic ground state: (a) Sample data shows the time dependence of the molecule number density, the solid line is the fit based on a two-body decay model; (b) loss rate coefficient versus temperature[63].

    图 15  超冷化学反应的普适模型 (a) 全同费米分子通过p-波散射, 在长程有一个角动量引起的势垒; (b)非全同分子或全同玻色分子可以通过s-波散射, 没有长程势垒

    Fig. 15.  Universal model of the ultracold molecule reactivity: (a) Identical fermionic molecules react via p-wave scattering and the rate of chemical reactions is determined by the p-wave angular momentum barrier; (b) non-identical fermionic molecules and identical bosonic molecules react via s-wave scattering.

    图 16  化学稳定(v = 0, J = 0)和有化学反应(v = 1, J = 0)的23Na87Rb分子在光阱中的损耗(a)和加热(b), 图中的曲线由通过对分子数目和温度同时拟合获得[68]

    Fig. 16.  Inelastic collisions with different chemical reactivities of 23Na87Rb molecules. Time evolutions of (a) molecule numbers and (b) temperatures for both nonreactive (v = 0, J = 0)(filled circles) and reactive (v = 1, J = 0) (filled squares) samples in optical dipole trap. The blue dashed and redsolid curves are fitting resultsofmolecule number and temperature using Eq. (9)[68].

    图 17  化学稳定(v = 0)和有化学反应(v = 1)的23Na87Rb分子在光阱中的损耗速率常数$\beta$与温度的关系, 图中的理论曲线为基于普适模型计算的结果. 在化学稳定的情况下, 可能的损耗通道为形成四体复合物(four-body complex)[68]

    Fig. 17.  Temperature dependence of $\beta$ for chemical stable (v = 0) and chemical reactivity state (v = 1) of 23Na87Rb molecules. Theoretical curve based on the CC calculation are also shown. Four-atom collision complex formation is one of the possible mechanism of molecule loss for non-reactive molecules[68].

  • [1]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [2]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [3]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [4]

    Bohn J, Rey A, Ye J 2017 Science 357 1002Google Scholar

    [5]

    Baranov M, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [6]

    Moses S, Covey J, Miecnikowski M, Jin D, Ye J 2017 Nat. Phys. 13 13

    [7]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [8]

    Lahaye T, Menotti C, Santos L, Lewenstein M, Pfau T 2009 Rep. Prog. Phys. 72 126401Google Scholar

    [9]

    Trefzger C, Menotti C, Capogrosso-Sansone B, Lewenstein M 2011 J. Phys. B 44 193001Google Scholar

    [10]

    André A, DeMille D, Doyle J, Lukin M, Maxwell S, Rabl P, Schoelkopf R, Zoller P 2006 Nat. Phys. 2 636Google Scholar

    [11]

    Carr L, DeMille D, Krems R, Ye J 2009 New J. Phys. 11 055049Google Scholar

    [12]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [13]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [14]

    Lu M, Burdick N, Youn S, Lev B 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [15]

    Ni K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, Miranda M, Bohn J, Ye J 2010 Nature 464 1324Google Scholar

    [16]

    Yi S, Li T, Sun C 2007 Phys. Rev. Lett. 98 260405Google Scholar

    [17]

    Gorshkov A, Manmana S, Chen G, Ye J, Demler E, Lukin M, Rey A 2011 Phys. Rev. Lett. 107 115301Google Scholar

    [18]

    Yao N, Gorshkov A, Laumann C, Läuchli A, Ye J, Lukin M 2013 Phys. Rev. Lett. 110 185302Google Scholar

    [19]

    Manmana S, Stoudenmire E, Hazzard K, Rey A, Gorshkov A 2013 Phys. Rev. B 87 081106Google Scholar

    [20]

    Shuman E, Barry J, DeMille D 2010 Nature 467 820Google Scholar

    [21]

    Hummon M, Yeo M, Stuhl B, Collopy A, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [22]

    Norrgard E, McCarron D, Steinecker M, Tarbutt M, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar

    [23]

    Anderegg L, Augenbraun B, Bao Y, Burchesky S, Cheuk L, Ketterle W, Doyle J 2018 Nat. Phys. 14 890Google Scholar

    [24]

    Collopy A, Ding S, Wu Y, Finneran I, Anderegg L, Augenbraun B, Doyle J, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar

    [25]

    Köhler T, Góral K, Julienne P 2006 Rev. Mod. Phys. 78 1311Google Scholar

    [26]

    Marco L, Valtolina G, Matsuda K, Tobias W, Covey J, Ye J 2019 Science aau 7230

    [27]

    Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S 2010 Phys. Rev. Lett. 105 203001Google Scholar

    [28]

    Takekoshi T, Debatin M, Rameshan R, Ferlaino F, Grimm R, Nägerl H, Sueur C, Hutson J, Julienne P, Kotochigova S, Tiemann E 2012 Phys. Rev. A 85 032506Google Scholar

    [29]

    Weinstein J, de Carvalho R, Guillet T, Friedrich B, Doyle J 1998 Nature 395 148Google Scholar

    [30]

    Maxwell S, Brahms N, de Carvalho R, Glenn D, Helton J, Nguyen S, Patterson D, Petricka J, DeMille D, Doyle J 2005 Phys. Rev. Lett. 95 173201Google Scholar

    [31]

    Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar

    [32]

    Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar

    [33]

    Bethlem H, Berden G, Meijer G 1999 Phys. Rev. Lett. 83 1558Google Scholar

    [34]

    Sawyer B, Stuhl B, Wang D, Yeo M, Ye J 2008 Phys. Rev. Lett. 101 203203Google Scholar

    [35]

    Xia Y, Yin Y, Chen H, Deng L, Yin J 2008 Phys. Rev. Lett. 100 043003Google Scholar

    [36]

    Yin Y, Xu S, Xia M, Xia Y, Yin J 2018 Phys. Rev. A 97 043403Google Scholar

    [37]

    Huang Y, Xu S, Yang X 2016 J. Phys. B: At. Mol. Opt. Phys. 49 135101Google Scholar

    [38]

    Rosa M 2004 Eur. Phys. J. D 31 395Google Scholar

    [39]

    Stuhl B, Sawyer B, Wang D, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [40]

    Williams H, Caldwell L, Fitch N, Truppe S, Rodewald J, Hinds E, Sauer B, Tarbutt M 2018 Phys. Rev. Lett. 120 163201Google Scholar

    [41]

    Cheuk L, Anderegg L, Augenbraun B, Bao Y, Burchesky S, Ketterle W, Doyle J 2018 Phys. Rev. Lett. 121 083201Google Scholar

    [42]

    Jones K, Tiesinga E, Lett P, Julienne P 2006 Rev. Mod. Phys. 78 483Google Scholar

    [43]

    Liu W, Wu J, Ma J, Li P, Sovkov V, Xiao L, Jia S 2016 Phys. Rev. A 94 032518Google Scholar

    [44]

    Wu J, Liu W, Wang X, Ma J, Li D, Sovkov V, Xiao L, Jia S 2018 J. Chem. Phys. 148 174304Google Scholar

    [45]

    Ni K, Ospelkaus S, Miranda M, Péer A, Neyenhuis B, Zirbel J, Kotochigova S, Julienne P, Jin D, Ye J 2008 Science 322 231Google Scholar

    [46]

    Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J, Sueur C, Dulieu O, Ferlaino F, Grimm R, Nägerl H 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [47]

    Molony P, Gregory P, Ji Z, Lu B, Köppinger M, Sueur C, Blackley C, Hutson J, Cornish S 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [48]

    Park J, Will S, Zwierlein M 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [49]

    Seeßelberg F, Luo X, Li M, Bause R, Kotochigova S, Bloch I, Gohle C 2018 Phys. Rev. Lett. 121 253401Google Scholar

    [50]

    Guo M, Zhu B, Lu B, Ye X, Wang F, Vexiau R, Bouloufa-Maafa N, Quéméner G, Dulieu O, Wang D 2016 Phys. Rev. Lett. 116 205303Google Scholar

    [51]

    Yang H, Zhang D, Liu L, Liu Y, Nan J, Zhao B, Pan J 2019 Science 363 261Google Scholar

    [52]

    Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar

    [53]

    Wang F, Xiong D, Li X, Wang D, Tiemann E 2013 Phys. Rev. A 87 050702Google Scholar

    [54]

    Guo M, Vexiau R, Zhu B, Lu B, Bouloufa-Maafa N, Dulieu O, Wang D 2017 Phys. Rev. A 96 052505Google Scholar

    [55]

    Aikawa K, Akamatsu D, Kobayashi J, Ueda M, Kishimoto T, Inouye S 2009 New J. Phys. 11 055035Google Scholar

    [56]

    Aikawa K, Kobayashi J, Oasa K, Kishimoto T, Ueda M, Inouye S 2011 Opt. Express 19 14479Google Scholar

    [57]

    Gregory P, Molony P, Köppinger M, Kumar A, Ji Z, Lu B, Marchant A, Cornish S 2015 New J. Phys. 17 055006Google Scholar

    [58]

    Vexiau R, Borsalino D, Lepers M, Orbán A, Aymar M, Dulieu O, Bouloufa-Maafa N 2017 Int. Rev. Phys. Chem. 36 709Google Scholar

    [59]

    Guo M, Ye X, He J, Quéméner G, Wang D 2018 Phys. Rev. A 97 020501Google Scholar

    [60]

    Lepers M, Vexiau R, Aymar M, Bouloufa-Maafa N, Dulieu O 2013 Phys. Rev. A 88 032709Google Scholar

    [61]

    Żuchowski P, Kosicki M, Kodrycka M, Soldán P 2013 Phys. Rev. A 87 022706Google Scholar

    [62]

    Byrd Jr J, Côté R 2010 Phys. Rev. A 82 010502Google Scholar

    [63]

    Ospelkaus S, Ni K, Wang D, Miranda M, Neyenhuis B, Quéméner G, Julienne P, Bohn J, Jin D, Ye J 2010 Science 327 853Google Scholar

    [64]

    Krems R 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar

    [65]

    Quéméner G, Bohn J 2010 Phys. Rev. A 81 022702Google Scholar

    [66]

    Quéméner G, Bohn J, Petrov A, Kotochigova S 2011 Phys. Rev. A 84 062703Google Scholar

    [67]

    Jones K, Maleki S, Bize S, Lett P, Williams C, Richling H, Knöckel H, Tiemann E, Wang H, Gould P, Stwalley W 1996 Phys. Rev. A 54 R1006Google Scholar

    [68]

    Ye X, Guo M, González-Martínez M, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar

    [69]

    Guo M, Ye X, He J, González-Martínez M, Vexiau R, G Quéméner, Wang D 2018 Phys. Rev. X 8 041044

    [70]

    Söding J, Guéry-Odelin D, Desbiolles P, Ferrari G, Dalibard J 1998 Phys. Rev. Lett. 80 1869Google Scholar

    [71]

    Weber T, Herbig J, Mark M, Nägerl H, Grimm R 2003 Phys. Rev. Lett. 91 123201Google Scholar

    [72]

    Seto J, Roy R, Vergès J, Amiot C 2000 J. Chem. Phys. 113 3067Google Scholar

    [73]

    Pashov A, Docenko O, Tamanis M, Ferber R, Knöckel H, Tiemann E 2005 Phys. Rev. A 72 062505Google Scholar

    [74]

    Żuchowski P, Hutson J 2010 Phys. Rev. A 81 060703Google Scholar

    [75]

    Mayle M, Quéméner G, Ruzic B, Bohn J 2013 Phys. Rev. A 87 012709Google Scholar

    [76]

    Gao B 2010 Phys. Rev. Lett. 105 263203Google Scholar

    [77]

    Idziaszek Z, Julienne P 2010 Phys. Rev. Lett. 104 113202Google Scholar

    [78]

    González-Martínez M, Dulieu O, Larrégaray P, Bonnet L 2014 Phys. Rev. A 90 052716Google Scholar

    [79]

    Liu L, Hood J, Yu Y, Zhang J, Hutzler N, Rosenband T, Ni K 2018 Science 360 aar7797

    [80]

    Liu L, Zhang J, Yu Y, Hutzler N, Liu Y, Rosenband T, Ni K 2018 Science 360 900Google Scholar

    [81]

    Lam M 2017 Ph.D. Dissertation (Singapore: National University of Singapore)

    [82]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B, Anderegg L, Sedlack A, Doyle J 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [83]

    González-Martínez M, Bohn J, Quéméner G 2017 Phys. Rev. A 96 032718Google Scholar

    [84]

    Danzl J, Mark M, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson J, Nägerl H 2010 Nat. Phys. 6 265Google Scholar

    [85]

    Doçaj A, Wall M, Mukherjee R, Hazzard K 2016 Phys. Rev. Lett. 116 135301Google Scholar

    [86]

    Chotia A, Neyenhuis B, Moses S, Yan B, Covey J, Foss-Feig M, Rey A, Jin D, Ye J 2012 Phys. Rev. Lett. 108 080405Google Scholar

    [87]

    Andreev V, Ang D, DeMille D, Doyle J, Gabrielse G, Haefner J, Hutzler N, Lasner Z, Meisenhelder C, O’Leary B, Panda C, West A, West E, Wu X 2018 Nature 562 355Google Scholar

    [88]

    Kozyryev I, Hutzler N 2017 Phys. Rev. Lett. 119 133002Google Scholar

  • [1] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [2] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [3] 成恩宏, 郎利君. 非互易Aubry-André 模型的经典电路模拟. 物理学报, 2022, 71(16): 160301. doi: 10.7498/aps.71.20220219
    [4] 高雪儿, 李代莉, 刘志航, 郑超. 非厄米系统的量子模拟新进展. 物理学报, 2022, 71(24): 240303. doi: 10.7498/aps.71.20221825
    [5] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [6] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [7] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [8] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [9] 白素英, 白景旭, 韩小萱, 焦月春, 赵建明. 超冷长程Rydberg-基态分子. 物理学报, 2021, 70(12): 123201. doi: 10.7498/aps.70.20202229
    [10] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器. 物理学报, 2021, 70(11): 118101. doi: 10.7498/aps.70.20210476
    [11] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, 2021, 70(14): 140306. doi: 10.7498/aps.70.20210831
    [12] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 物理学报, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [13] 赵兴东, 张莹莹, 刘伍明. 光晶格中超冷原子系统的磁激发. 物理学报, 2019, 68(4): 043703. doi: 10.7498/aps.68.20190153
    [14] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [15] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [16] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [17] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [18] 杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂. 超冷铷铯极性分子振转光谱的实验研究. 物理学报, 2012, 61(21): 213301. doi: 10.7498/aps.61.213301
    [19] 刘海莲, 王治国, 杨成全, 石云龙. 链间超交换相互作用下spin-Peierls梯子模型的基态行为. 物理学报, 2006, 55(7): 3688-3691. doi: 10.7498/aps.55.3688
    [20] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响. 物理学报, 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
计量
  • 文章访问数:  11947
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26
  • 修回日期:  2019-02-15
  • 上网日期:  2019-02-19
  • 刊出日期:  2019-02-20

/

返回文章
返回