搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温退火处理下SiNx薄膜组成及键合结构变化

姜礼华 曾祥斌 张笑

引用本文:
Citation:

高温退火处理下SiNx薄膜组成及键合结构变化

姜礼华, 曾祥斌, 张笑

The variations in composition and bonding configuration of SiNx film under high annealing temperature treatment

Jiang Li-Hua, Zeng Xiang-Bin, Zhang Xiao
PDF
导出引用
  • 采用等离子增强化学气相沉积法, 以氨气和硅烷为反应气体, p型单晶硅为衬底, 低温下(200 ℃)制备了非化学计量比氮化硅(SiNx)薄膜. 在N2氛围中, 于5001100 ℃范围内对薄膜进行热退火处理. 室温下分别使用Fourier变换红外吸收(FTIR)光谱技术和X射线光电子能谱(XPS)技术测量未退火以及退火处理后SiNx薄膜的SiN, SiH, NH键键合结构和Si 2p, N 1s电子结合能以及薄膜内N和Si原子含量比值R的变化. 详细讨论了不同温度退火处理下SiNx薄膜的FTIR和XPS光谱演化同薄膜内Si, N, H原子间键合方式变化之间的关系. 通过分析FTIR和XPS光谱发现退火温度低于800 ℃时, SiNx薄膜内SiH和NH键断裂后主要形成SiN键; 当退火温度高于800 ℃时薄膜内SiH和NH键断裂利于N元素逸出和Si纳米粒子的形成; 当退火温度达到1100 ℃时N2与SiNx薄膜产生化学反应导致薄膜内N和Si原子含量比值R增加. 这些结果有助于控制高温下SiNx薄膜可能产生的化学反应和优化SiNx薄膜内的Si纳米粒子制备参数.
    Non-stoichiometric silicon nitride (SiNx) thin films are deposited on p-type crystalline silicon substrates at low temperature (200 ℃) using ammonia and silane mixtures by plasma enhanced chemical vapor deposition. The evolutions of SiN, SiH and NH bonding configurations, the variations of Si 2p and N 1s electron binding energy and the ratio R of nitrogen to silicon atoms in SiNx films annealed at temperature in a range of 5001100 ℃ are investigated at room temperature by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The relationship between the evolutions of FTIR and XPS spectroscopy of the samples at different annealing temperatures and the variations of bonding configurations of Si, N and H atoms is discussed in detail. According to the arguments about FTIR and XPS spectroscopy we conclude that when the annealing temperature is lower than 800 ℃, the breakings of SiH and NH bonds in the SiNx films lead mainly to the formation of SiN bonds; when the annealing temperature is higher than 800 ℃, the breakings of SiH and NH bonds are conducible to the effusion of N atoms and the formation of silicon nanoparticles; when the annealing temperature equals 1100 ℃, the N2 react on the SiNx films to cause the ratio R of nitrogen to silicon atoms to inerease. These results are useful for controlling the probable chemical reaction in SiNx films under high annealing temperatures and optimizing the fabrication parameters of silicon nanoparticles embedded in SiNx films.
    • 基金项目: 华中科技大学研究生创新基金(批准号: HF07022010185)和中央高校基本科研业务费(批准号: 2010MS054)资助的课题.
    • Funds: Project supported by Huazhong University of Science and Technology Graduates Innovation Fund, China (Grant No. HF07022010185), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2010MS054).
    [1]

    WarrenWL, Lenahan P M, Kanicki J 1991 J. Appl. Phys. 70 2220

    [2]

    Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Bremond G 2009 J. Luminescence 129 1744

    [3]

    Huang R, Wang D Q, Song J, Ding H L, Wang X, Guo Y Q, Chen K J, Xu J, Li W, Ma Z Y 2010 Acta Phys. Sin. 59 5823 (in Chinese) [黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳青, 陈坤基, 徐骏, 李伟, 马忠元 2010 物理学报 59 5823]

    [4]

    Molinari M, Rinnert H, Vergnat M 2007 J. Appl. Phys. 101 123532

    [5]

    Wang M H, Li D S, Yuan Z Z, Yang D R, Que D L 2007 Appl. Phys. Lett. 90 131903

    [6]

    Kim B H, Cho C H, Kim T W, Park N M, Sung G U 2005 Appl. Phys. Lett. 86 091908

    [7]

    Gourbilleau F, Dufour C, Rezgui B, Brémond G 2009 Mater. Sci. Eng. B 159–160 70

    [8]

    Wang Y Q, Wang Y G, Cao L, Cao Z X 2003 Appl. Phys. Lett. 83 3474

    [9]

    Benami A, Santana G, Ortiz A, Ponce A, Romeu D, Aguilar- Hernandez J, Contreras-Puente G, Alonso J C 2007 Nanotechnology 18 155704

    [10]

    Kang Z T, Arnold B, Summers C J, Wagner B K 2006 Nanotechnology 17 4477

    [11]

    Kim B H, Davis R F, Park S J 2010 Thin Solid Films S18 1744

    [12]

    Parsons G N, Souk J H, Batey J 1991 J. Appl. Phys. 70 1553

    [13]

    Panchal A K, Solanki C S 2009 Thin Solid Films 517 3488

    [14]

    Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Bremond G 2009 J. Vac. Sci. Technol. B 27 2238

    [15]

    Dong H P, Huang R, Wang D Q, Chen J K, Li W, Ma Z Y, Xu J, Huang X F 2008 Chin. Phys. Lett. 25 4147

    [16]

    Rinnert H, Vergnat M, Marchal G, Burneau A 1998 Appl. Phys. Lett. 72 3157

    [17]

    Jiang L H, Zeng X B, Zhang X 2011 J. Non-Cryst. Solids 357 2187

    [18]

    Hao H L, Wu L K, Shen W Z 2008 Appl. Phys. Lett. 92 121922

    [19]

    Martinez F L, Martil I, Gonzalez-Diaz G, Selle B, Sieber I 1998 J. Non-Cryst. Solids 227–230 523

    [20]

    Kärcher R, Ley L, Johnson R L 1984 Phys. Rev. B 30 1896

    [21]

    Chang G R, Ma F, Ma D Y, Xu K W 2010 Nanotechnology 21 465605

    [22]

    Hao H L, Shen W Z 2008 Nanotechnology 19 455704

    [23]

    Gautam D, Koyanagi E, Uchino T 2009 J. Appl. Phys. 105 073517

    [24]

    Wilkinson A R, Elliman R G 2004 J. Appl. Phys. 96 4018

  • [1]

    WarrenWL, Lenahan P M, Kanicki J 1991 J. Appl. Phys. 70 2220

    [2]

    Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Bremond G 2009 J. Luminescence 129 1744

    [3]

    Huang R, Wang D Q, Song J, Ding H L, Wang X, Guo Y Q, Chen K J, Xu J, Li W, Ma Z Y 2010 Acta Phys. Sin. 59 5823 (in Chinese) [黄锐, 王旦清, 宋捷, 丁宏林, 王祥, 郭艳青, 陈坤基, 徐骏, 李伟, 马忠元 2010 物理学报 59 5823]

    [4]

    Molinari M, Rinnert H, Vergnat M 2007 J. Appl. Phys. 101 123532

    [5]

    Wang M H, Li D S, Yuan Z Z, Yang D R, Que D L 2007 Appl. Phys. Lett. 90 131903

    [6]

    Kim B H, Cho C H, Kim T W, Park N M, Sung G U 2005 Appl. Phys. Lett. 86 091908

    [7]

    Gourbilleau F, Dufour C, Rezgui B, Brémond G 2009 Mater. Sci. Eng. B 159–160 70

    [8]

    Wang Y Q, Wang Y G, Cao L, Cao Z X 2003 Appl. Phys. Lett. 83 3474

    [9]

    Benami A, Santana G, Ortiz A, Ponce A, Romeu D, Aguilar- Hernandez J, Contreras-Puente G, Alonso J C 2007 Nanotechnology 18 155704

    [10]

    Kang Z T, Arnold B, Summers C J, Wagner B K 2006 Nanotechnology 17 4477

    [11]

    Kim B H, Davis R F, Park S J 2010 Thin Solid Films S18 1744

    [12]

    Parsons G N, Souk J H, Batey J 1991 J. Appl. Phys. 70 1553

    [13]

    Panchal A K, Solanki C S 2009 Thin Solid Films 517 3488

    [14]

    Rezgui B, Sibai A, Nychyporuk T, Lemiti M, Bremond G 2009 J. Vac. Sci. Technol. B 27 2238

    [15]

    Dong H P, Huang R, Wang D Q, Chen J K, Li W, Ma Z Y, Xu J, Huang X F 2008 Chin. Phys. Lett. 25 4147

    [16]

    Rinnert H, Vergnat M, Marchal G, Burneau A 1998 Appl. Phys. Lett. 72 3157

    [17]

    Jiang L H, Zeng X B, Zhang X 2011 J. Non-Cryst. Solids 357 2187

    [18]

    Hao H L, Wu L K, Shen W Z 2008 Appl. Phys. Lett. 92 121922

    [19]

    Martinez F L, Martil I, Gonzalez-Diaz G, Selle B, Sieber I 1998 J. Non-Cryst. Solids 227–230 523

    [20]

    Kärcher R, Ley L, Johnson R L 1984 Phys. Rev. B 30 1896

    [21]

    Chang G R, Ma F, Ma D Y, Xu K W 2010 Nanotechnology 21 465605

    [22]

    Hao H L, Shen W Z 2008 Nanotechnology 19 455704

    [23]

    Gautam D, Koyanagi E, Uchino T 2009 J. Appl. Phys. 105 073517

    [24]

    Wilkinson A R, Elliman R G 2004 J. Appl. Phys. 96 4018

计量
  • 文章访问数:  2615
  • PDF下载量:  1130
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-04
  • 修回日期:  2011-03-30
  • 刊出日期:  2012-01-05

高温退火处理下SiNx薄膜组成及键合结构变化

  • 1. 华中科技大学电子科学与技术系, 武汉 430074
    基金项目: 

    华中科技大学研究生创新基金(批准号: HF07022010185)和中央高校基本科研业务费(批准号: 2010MS054)资助的课题.

摘要: 采用等离子增强化学气相沉积法, 以氨气和硅烷为反应气体, p型单晶硅为衬底, 低温下(200 ℃)制备了非化学计量比氮化硅(SiNx)薄膜. 在N2氛围中, 于5001100 ℃范围内对薄膜进行热退火处理. 室温下分别使用Fourier变换红外吸收(FTIR)光谱技术和X射线光电子能谱(XPS)技术测量未退火以及退火处理后SiNx薄膜的SiN, SiH, NH键键合结构和Si 2p, N 1s电子结合能以及薄膜内N和Si原子含量比值R的变化. 详细讨论了不同温度退火处理下SiNx薄膜的FTIR和XPS光谱演化同薄膜内Si, N, H原子间键合方式变化之间的关系. 通过分析FTIR和XPS光谱发现退火温度低于800 ℃时, SiNx薄膜内SiH和NH键断裂后主要形成SiN键; 当退火温度高于800 ℃时薄膜内SiH和NH键断裂利于N元素逸出和Si纳米粒子的形成; 当退火温度达到1100 ℃时N2与SiNx薄膜产生化学反应导致薄膜内N和Si原子含量比值R增加. 这些结果有助于控制高温下SiNx薄膜可能产生的化学反应和优化SiNx薄膜内的Si纳米粒子制备参数.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回