搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

量子相干

李保民 胡明亮 范桁

引用本文:
Citation:

量子相干

李保民, 胡明亮, 范桁

Quantum coherence

Li Bao-Min, Hu Ming-Liang, Fan Heng
PDF
HTML
导出引用
  • 量子相干不仅是量子力学中的一个基本概念, 同时也是重要的量子信息处理的物理资源. 随着基于资源理论框架的量子相干度量方案的提出, 量子相干度的量化研究成为近年来人们关注的一个热点问题. 量子相干作为一种物理资源也十分脆弱, 极容易受到环境噪声的影响而产生退相干, 因此开放系统中的量子相干演化和保持也是人们广泛关注的课题. 另外, 量子相干在量子多体系统、量子热动力学、量子生物学等领域也有着潜在的应用价值. 本文介绍量子相干度量的资源理论框架和基于该框架定义的相对熵相干性、l1范数相干性、基于量子纠缠的相干性、基于凸顶结构的相干性和相干鲁棒性等量子相干度量函数, 概述开放系统中量子相干演化的动力学行为、典型信道的量子相干产生和破坏能力以及量子相干的冻结等现象, 同时例举量子相干在Deutsch-Jozsa算法、Grover算法以及量子多体系统相变问题研究等方面的重要应用. 量子相干研究仍处于快速发展之中, 期望本综述能为该领域的发展带来启示.
    Quantum coherence is not only a fundamental concept of quantum mechanics, but also an important physical resource for quantum information processing. Along with the formulation of the resource theoretic framework of quantum coherence, the quantification of coherence is still one of the recent research focuses. Quantum coherence is also very fragile, and the environmental noise usually induces a system to decohere. Hence it is also an important subject to make clear the dynamical behavior and to seek a flexible way of preserving quantum coherence of an open quantum system. Besides, there are many potential applications of quantum coherence in quantum many-body system, quantum thermodynamics, quantum biology and other related fields. We review in this paper the resource theoretic framework for quantifying coherence and the relevant quantum coherence measures defined within this framework which includes the relative entropy of coherence, the l1 norm of coherence, the entanglement-based measure of coherence, the convex roof measure of coherence, and the robustness of coherence. We also review the dynamical behaviors of quantum coherence for certain open quantum systems, the coherence generating and breaking power of typical quantum channels, and the freezing phenomenon of quantum coherence. Moreover, we exemplify applications of quantum coherence in Deutsch-Jozsa algorithm, Grover search algorithms, and the study of quantum phase transitions in multipartite systems. We hope that these results may provide not only an overview of the relevant field, but also an outlook of the future research direction of this exciting field.
      通信作者: 胡明亮, mingliang0301@163.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0302104, 2016YFA0300600)、国家自然科学基金(批准号: 91536108, 11774406, 11675129)和中国科学院先导B专项(批准号: XDB28000000)资助的课题.
      Corresponding author: Hu Ming-Liang, mingliang0301@163.com
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0302104, 2016YFA0300600), the National Natural Science Foundation of China (Grant Nos. 91536108, 11774406, 11675129), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000).
    [1]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

    [2]

    Aberg J 2014 Phys. Rev. Lett. 113 150402Google Scholar

    [3]

    Lostaglio M, Jennings D, Rudolph T 2015 Nat. Commun. 6 6383Google Scholar

    [4]

    Narasimhachar V, Gour G 2015 Nat. Commun. 6 7689Google Scholar

    [5]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [6]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [7]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [8]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [9]

    Bu K, Anand N, Singh U 2018 Phys. Rev. A 97 032342Google Scholar

    [10]

    Yu C S 2017 Phys. Rev. A 95 042337Google Scholar

    [11]

    Yuan X, Zhou H, Cao Z, Ma X 2015 Phys. Rev. A 92 022124Google Scholar

    [12]

    Qi X, Gao T, Yan F L 2017 J. Phys. A 50 285301Google Scholar

    [13]

    Liu C L, Zhang D J, Yu X D, Ding Q M 2017 Quantum Inf. Process. 16 198Google Scholar

    [14]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401Google Scholar

    [15]

    Hu M L, Fan H 2016 Sci. Rep. 6 29260Google Scholar

    [16]

    Zanardi P, Styliaris G, Venuti L C 2017 Phys. Rev. A 95 052306Google Scholar

    [17]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [18]

    Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404Google Scholar

    [19]

    Shao L H, Xi Z, Fan H, Li Y 2015 Phys. Rev. A 91 042120Google Scholar

    [20]

    Yao Y, Xiao X, Ge L, Li M, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [21]

    Streltsov A, Rana S, Boes P, Eisert J 2017 Phys. Rev. Lett. 119 140402Google Scholar

    [22]

    Aberg J 2006 arXiv:0612146 [quant-ph]

    [23]

    Chitambar E, Gour G 2016 Phys. Rev. Lett. 117 030401Google Scholar

    [24]

    Chitambar E, Gour G 2016 Phys. Rev. A 94 052336Google Scholar

    [25]

    Marvian I, Spekkens R W 2016 Phys. Rev. A 94 052324Google Scholar

    [26]

    de Vincenzo J I, Streltsov A 2017 J. Phys. A 50 045301Google Scholar

    [27]

    Yu X D, Zhang D J, Xu G F, Tong D M 2016 Phys. Rev. A 94 060302Google Scholar

    [28]

    Du S, Bai Z, Guo Y 2015 Phys. Rev. A 91 052120Google Scholar

    [29]

    Peng Y, Jiang Y, Fan H 2016 Phys. Rev. A 93 032326Google Scholar

    [30]

    Rastegin A E 2016 Phys. Rev. A 93 032136Google Scholar

    [31]

    Hu M L, Fan H 2017 Phys. Rev. A 95 052106Google Scholar

    [32]

    Yao Y, Dong G H, Ge L, Li M, Sun C P 2016 Phys. Rev. A 94 062339Google Scholar

    [33]

    Singh U, Bera M N, Dhar H S, Pati A K 2015 Phys. Rev. A 91 052115Google Scholar

    [34]

    Rana S, Parashar P, Lewenstein M 2016 Phys. Rev. A 93 012110Google Scholar

    [35]

    Streltsov A, Kampermann H, Bruß D 2010 New J. Phys. 12 123004Google Scholar

    [36]

    Marvian I, Spekkens R W 2014 Nat. Commun. 5 3821Google Scholar

    [37]

    Marvian I, Spekkens R W, Zanardi P 2016 Phys. Rev. A 93 052331Google Scholar

    [38]

    Zhang Y R, Shao LH, Li Y, Fan H 2016 Phys. Rev. A 93 012334Google Scholar

    [39]

    Xu J 2016 Phys. Rev. A 93 032111Google Scholar

    [40]

    Tan K C, Volkoff T, Kwon H, Jeong H 2017 Phys. Rev. Lett. 119 190405Google Scholar

    [41]

    Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O, Adesso G 2016 Phys. Rev. Lett. 117 160402Google Scholar

    [42]

    Mani A, Karimipour V 2015 Phys. Rev. A 92 032331Google Scholar

    [43]

    Bu K, Kumar A, Zhang L, Wu J 2017 Phys. Lett. A 381 1670Google Scholar

    [44]

    Xi Z J, Hu M L, Li Y M, Fan H 2018 Quantum Inf. Process. 17 34Google Scholar

    [45]

    Situ H, Hu X 2016 Quantum Inf. Process. 15 4649Google Scholar

    [46]

    Andersson E, Cresser J D, Hall M J W 2007 J. Mod. Opt. 54 1695Google Scholar

    [47]

    Deutsch D, Jozsa R 1992 Proc. R. Soc. Landon A 439 553Google Scholar

    [48]

    Hillery M 2016 Phys. Rev. A 93 012111Google Scholar

    [49]

    Anand N, Pati A K 2016 arXiv:1611.04542 [quant-ph]

    [50]

    Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y, Fan H 2017 Phys. Rev. A 95 032307Google Scholar

    [51]

    Karpat G, Çakmak B, Fanchini F F 2014 Phys. Rev. B 90 104431Google Scholar

    [52]

    Chen J J, Cui J, Zhang Y R, Fan H 2016 Phys. Rev. A 94 022112Google Scholar

    [53]

    Lei S, Tong P 2016 Quantum Inf. Process. 15 1811Google Scholar

    [54]

    Li Y C, Lin H Q 2016 Sci. Rep. 6 26365Google Scholar

    [55]

    Malvezzi A L, Karpat G, Çakmak B, Fanchini F F, Debarba T, Vianna R O 2016 Phys. Rev. B 93 184428Google Scholar

    [56]

    Faist P, Oppenheim J, Renner R 2015 New J. Phys. 17 043003Google Scholar

    [57]

    Misra A, Singh U, Bhattacharya S, Pati A K 2016 Phys. Rev. A 93 052335Google Scholar

  • [1]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1Google Scholar

    [2]

    Aberg J 2014 Phys. Rev. Lett. 113 150402Google Scholar

    [3]

    Lostaglio M, Jennings D, Rudolph T 2015 Nat. Commun. 6 6383Google Scholar

    [4]

    Narasimhachar V, Gour G 2015 Nat. Commun. 6 7689Google Scholar

    [5]

    Lambert N, Chen Y N, Cheng Y C, Li C M, Chen G Y, Nori F 2013 Nat. Phys. 9 10Google Scholar

    [6]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [7]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [8]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [9]

    Bu K, Anand N, Singh U 2018 Phys. Rev. A 97 032342Google Scholar

    [10]

    Yu C S 2017 Phys. Rev. A 95 042337Google Scholar

    [11]

    Yuan X, Zhou H, Cao Z, Ma X 2015 Phys. Rev. A 92 022124Google Scholar

    [12]

    Qi X, Gao T, Yan F L 2017 J. Phys. A 50 285301Google Scholar

    [13]

    Liu C L, Zhang D J, Yu X D, Ding Q M 2017 Quantum Inf. Process. 16 198Google Scholar

    [14]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401Google Scholar

    [15]

    Hu M L, Fan H 2016 Sci. Rep. 6 29260Google Scholar

    [16]

    Zanardi P, Styliaris G, Venuti L C 2017 Phys. Rev. A 95 052306Google Scholar

    [17]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [18]

    Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404Google Scholar

    [19]

    Shao L H, Xi Z, Fan H, Li Y 2015 Phys. Rev. A 91 042120Google Scholar

    [20]

    Yao Y, Xiao X, Ge L, Li M, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [21]

    Streltsov A, Rana S, Boes P, Eisert J 2017 Phys. Rev. Lett. 119 140402Google Scholar

    [22]

    Aberg J 2006 arXiv:0612146 [quant-ph]

    [23]

    Chitambar E, Gour G 2016 Phys. Rev. Lett. 117 030401Google Scholar

    [24]

    Chitambar E, Gour G 2016 Phys. Rev. A 94 052336Google Scholar

    [25]

    Marvian I, Spekkens R W 2016 Phys. Rev. A 94 052324Google Scholar

    [26]

    de Vincenzo J I, Streltsov A 2017 J. Phys. A 50 045301Google Scholar

    [27]

    Yu X D, Zhang D J, Xu G F, Tong D M 2016 Phys. Rev. A 94 060302Google Scholar

    [28]

    Du S, Bai Z, Guo Y 2015 Phys. Rev. A 91 052120Google Scholar

    [29]

    Peng Y, Jiang Y, Fan H 2016 Phys. Rev. A 93 032326Google Scholar

    [30]

    Rastegin A E 2016 Phys. Rev. A 93 032136Google Scholar

    [31]

    Hu M L, Fan H 2017 Phys. Rev. A 95 052106Google Scholar

    [32]

    Yao Y, Dong G H, Ge L, Li M, Sun C P 2016 Phys. Rev. A 94 062339Google Scholar

    [33]

    Singh U, Bera M N, Dhar H S, Pati A K 2015 Phys. Rev. A 91 052115Google Scholar

    [34]

    Rana S, Parashar P, Lewenstein M 2016 Phys. Rev. A 93 012110Google Scholar

    [35]

    Streltsov A, Kampermann H, Bruß D 2010 New J. Phys. 12 123004Google Scholar

    [36]

    Marvian I, Spekkens R W 2014 Nat. Commun. 5 3821Google Scholar

    [37]

    Marvian I, Spekkens R W, Zanardi P 2016 Phys. Rev. A 93 052331Google Scholar

    [38]

    Zhang Y R, Shao LH, Li Y, Fan H 2016 Phys. Rev. A 93 012334Google Scholar

    [39]

    Xu J 2016 Phys. Rev. A 93 032111Google Scholar

    [40]

    Tan K C, Volkoff T, Kwon H, Jeong H 2017 Phys. Rev. Lett. 119 190405Google Scholar

    [41]

    Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O, Adesso G 2016 Phys. Rev. Lett. 117 160402Google Scholar

    [42]

    Mani A, Karimipour V 2015 Phys. Rev. A 92 032331Google Scholar

    [43]

    Bu K, Kumar A, Zhang L, Wu J 2017 Phys. Lett. A 381 1670Google Scholar

    [44]

    Xi Z J, Hu M L, Li Y M, Fan H 2018 Quantum Inf. Process. 17 34Google Scholar

    [45]

    Situ H, Hu X 2016 Quantum Inf. Process. 15 4649Google Scholar

    [46]

    Andersson E, Cresser J D, Hall M J W 2007 J. Mod. Opt. 54 1695Google Scholar

    [47]

    Deutsch D, Jozsa R 1992 Proc. R. Soc. Landon A 439 553Google Scholar

    [48]

    Hillery M 2016 Phys. Rev. A 93 012111Google Scholar

    [49]

    Anand N, Pati A K 2016 arXiv:1611.04542 [quant-ph]

    [50]

    Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y, Fan H 2017 Phys. Rev. A 95 032307Google Scholar

    [51]

    Karpat G, Çakmak B, Fanchini F F 2014 Phys. Rev. B 90 104431Google Scholar

    [52]

    Chen J J, Cui J, Zhang Y R, Fan H 2016 Phys. Rev. A 94 022112Google Scholar

    [53]

    Lei S, Tong P 2016 Quantum Inf. Process. 15 1811Google Scholar

    [54]

    Li Y C, Lin H Q 2016 Sci. Rep. 6 26365Google Scholar

    [55]

    Malvezzi A L, Karpat G, Çakmak B, Fanchini F F, Debarba T, Vianna R O 2016 Phys. Rev. B 93 184428Google Scholar

    [56]

    Faist P, Oppenheim J, Renner R 2015 New J. Phys. 17 043003Google Scholar

    [57]

    Misra A, Singh U, Bhattacharya S, Pati A K 2016 Phys. Rev. A 93 052335Google Scholar

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [4] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, 2019, 68(3): 034203. doi: 10.7498/aps.68.20182215
    [5] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, 2019, 68(3): 030307. doi: 10.7498/aps.68.20190039
    [6] 刘锋, 高冬梅, 蔡晓秋. 多体系统中相干资源的一般化理论. 物理学报, 2019, 68(23): 230301. doi: 10.7498/aps.68.20190966
    [7] 翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹. 量子相干态的二维电子光谱测量的原理、应用和发展. 物理学报, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [8] 李明, 陈阳, 郭光灿, 任希锋. 表面等离激元量子信息应用研究进展. 物理学报, 2017, 66(14): 144202. doi: 10.7498/aps.66.144202
    [9] 李卓, 邢莉娟. 差错基、量子码与群代数. 物理学报, 2013, 62(13): 130306. doi: 10.7498/aps.62.130306
    [10] 邢莉娟, 李卓, 张武军. 加强的量子汉明限. 物理学报, 2011, 60(5): 050304. doi: 10.7498/aps.60.050304
    [11] 王云江, 白宝明, 王新梅. 量子稀疏图码的反馈式迭代译码. 物理学报, 2010, 59(11): 7591-7595. doi: 10.7498/aps.59.7591
    [12] 孙伟峰, 李美成, 赵连城. 低维半导体异质结中的量子相干红外发射机理理论研究. 物理学报, 2010, 59(9): 6185-6192. doi: 10.7498/aps.59.6185
    [13] 邢莉娟, 李 卓, 白宝明, 王新梅. 量子卷积码的编译码方法. 物理学报, 2008, 57(8): 4695-4699. doi: 10.7498/aps.57.4695
    [14] 李 卓, 邢莉娟. 量子Generalized Reed-Solomon码. 物理学报, 2008, 57(1): 28-30. doi: 10.7498/aps.57.28
    [15] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [16] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究. 物理学报, 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [17] 李 卓, 邢莉娟. 一类基于级联结构的量子好码. 物理学报, 2007, 56(10): 5602-5606. doi: 10.7498/aps.56.5602
    [18] 胡振华, 黄德修. 非对称耦合量子阱吸收与色散的理论研究. 物理学报, 2005, 54(4): 1788-1793. doi: 10.7498/aps.54.1788
    [19] 张权, 张尔扬. 非对称二状态量子密钥分配协议最优参量研究. 物理学报, 2002, 51(8): 1684-1689. doi: 10.7498/aps.51.1684
    [20] 张权, 唐朝京, 高峰. 量子Turbo码. 物理学报, 2002, 51(1): 15-20. doi: 10.7498/aps.51.15
计量
  • 文章访问数:  14269
  • PDF下载量:  624
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-28
  • 修回日期:  2018-10-24
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回