搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多体系统中相干资源的一般化理论

刘锋 高冬梅 蔡晓秋

引用本文:
Citation:

多体系统中相干资源的一般化理论

刘锋, 高冬梅, 蔡晓秋

General resource theory of quantum coherence in multipartite system

Liu Feng, Gao Dong-Mei, Cai Xiao-Qiu
PDF
HTML
导出引用
  • 量子相干理论是一类重要的量子资源理论, 其自由操作是各种类型的非相干操作. 在单体相干资源理论中, 最大相干态是最重要的量子资源态, 它被定义为在非相干操作下可以转化为任何其他纯态的量子态. 但是, 这一情形在多体系统中发生了巨大改变: 不仅在有些相干度量下不存在唯一的最大相干态, 而且在有些非相干操作下几乎所有纯的相干多体态都不可比较(非相干操作下, 量子态之间的转换几乎不可能). 为了解决这一问题, 把非相干操作的定义扩展为一种不能产生相干的量子操作, 即研究一般化的相干资源理论. 具体地说, 基于量子资源是否来源于多体相干或者真的多体相干研究两类可能的量子资源理论框架, 并且指出在这些理论框架下存在合理的偏序关系(每个纯态都可在非相干操作下转换为相干度更弱的纯态). 另外, 还证明了真的多体相干资源理论下存在唯一的最大相干态.
    The theory of quantum coherence is an important kind of quantum resource theory, and its free operations are various kinds of incoherent operations. In the single-system coherence resource theory, the maximally coherent state is the most important quantum resource state, and it can turn into a quantum state of any other pure state. However, the situation is quite different from multipartite quantum systems: not only does no-go theorem forbidding the existence of a unique maximally coherent state exist there, but almost all pure multipartite coherent states are incomparable (i.e., some incoherent operation transformations among them are almost never possible). In order to cope with this problem, we consider general coherent resource theories in which we relax the traditional incoherent operations to operations that do not create coherence. Specifically, we consider two possible theories, depending on whether resources correspond to bipartite coherence or genuinely multipartite coherent states (each subsystem is coherent): one is the theory in which bipartite coherence states are considered as a resource and the free operations are bipartite incoherent preservation and the other is the theory that involves genuinely multipartite coherent states and fully incoherent operations. These ideas come from the research by Contreras-Tejada et al. (Phys. Rev. Lett. 122 120503), where the alternative entanglement resource theories were considered through relaxing the class of local operations and classical communication (LOCC) to operations that do not create entanglement, and they considered two possible theories depending on whether resources correspond to the multipartite entangled or genuinely multipartite entangled (GME) states. Furthermore, we show that there exists meaningful partial order (i.e. each pure state is transformable to a more weakly coherent pure state) in these two theory frames. Finally, we prove that the genuine multipartite coherent resource theory has a unique maximally coherent state (i.e. it can be transformed into any other state by the allowed free operations). Our results cover a wide class of coherent resource theories due to the free operations we introduced, and the discussion is solidified by important examples, such as entanglement, superposition, asymmetry, et al. And, how to establish the relations between these two kinds of multipartite coherent states, quantum discords and entanglements is also an interesting problem.
      通信作者: 刘锋, liufeng23490@126.com
    • 基金项目: 国家自然科学基金(批准号: 61771294, 61602232)和山东省自然科学基金(批准号: ZR2015FQ006)资助的课题.
      Corresponding author: Liu Feng, liufeng23490@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771294, 61602232) and the Natural Science Foundation of Shandong Provincie, China (Grant No. ZR2015FQ006)
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [2]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001Google Scholar

    [3]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [4]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762–764 1Google Scholar

    [5]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [6]

    Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404Google Scholar

    [7]

    Zhao M J, Ma T, Quan Q, Fan H, Pereira R 2019 Phys. Rev. A 100 012315Google Scholar

    [8]

    Zhou Y, Zhao Q, Yuan X, Ma X 2017 New J. Phys. 19 123033Google Scholar

    [9]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [10]

    Streltsov A, Rana S, Bera M N, Lewenstein M 2017 Phys. Rev. X 7 011024

    [11]

    Kumar A 2017 Phys. Lett. A 381 991Google Scholar

    [12]

    Gao F, Qin S J, Huang W, Wen Q Y 2019 Sci. China-Phys. Mech. Astron. 62 070301Google Scholar

    [13]

    杨宇光, 张兴 2008 中国科学: 物理学 力学 天文学 38 523

    Yang Y G, Zhang X 2008 Sci. Sin.-Phys. Mech. Astron. 38 523

    [14]

    Wei C Y, Cai X Q, Liu B, Wang T Y, Gao F 2018 IEEE Trans. Comput. 67 2Google Scholar

    [15]

    Ma J, Zhou Y, Yuan X, Ma X 2019 Phys. Rev. A 99 062325Google Scholar

    [16]

    Ma J, Hakande A, Yuan X, Ma X 2019 Phys. Rev. A 99 022328Google Scholar

    [17]

    Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M, Zeilinger A 2005 Nature 434 169Google Scholar

    [18]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [19]

    Pan M, Qiu D 2019 Phys. Rev. A 100 012349Google Scholar

    [20]

    李海, 邹健, 邵彬, 陈雨, 华臻 2019 物理学报 68 040201Google Scholar

    Li H, Zou J, Shao B, Chen Y, Hua Z 2019 Acta Phys. Sin. 68 040201Google Scholar

    [21]

    Gao D M, Xin Y, Ye Z, Qiao X Y 2019 Int. J. Quantum Inf. 17 1950004Google Scholar

    [22]

    Liu F, Li F 2016 Quantum Inf. Process 15 4203Google Scholar

    [23]

    Liu F, Li F, Chen J, Xing W 2016 Quantum Inf. Process 15 3459Google Scholar

    [24]

    Lostaglio M, Müller M P 2019 Phys. Rev. Lett. 123 020403Google Scholar

    [25]

    Luo S, Sun Y 2019 Phys. Lett. A 383 2869Google Scholar

    [26]

    Zhao Q, Liu Y, Yuan X, Chitambar E, Ma X 2018 Phys. Rev. Lett. 120 070403Google Scholar

    [27]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [28]

    Gallego R, Aolita L 2015 Phys. Rev. X 5 041008

    [29]

    肖书, 郭志华, 曹怀信 2019 中国科学: 物理学 力学 天文学 49 010301

    Xiao S, Guo Z H, Cao H X 2019 Sci. Sin.-Phys. Mech Astron 49 010301

    [30]

    Lami L, Regula B, Adesso G 2019 Phys. Rev. Lett. 122 150402Google Scholar

    [31]

    Wu K D, Theurer T, Xiang G Y, Li C F, Guo G C, Plenio M B, Streltsov A 2019 arXiv: 1903.01479 v1 [quant-ph]

    [32]

    Du S, Bai Z, Guo Y 2017 Phys. Rev. A 95 029901Google Scholar

    [33]

    Brandão F G S L, Plenio M B 2008 Nat. Phys. 4 873Google Scholar

    [34]

    Contreras-Tejada P, Palazuelos C, de Vicente J I 2019 Phys. Rev. Lett. 122 120503Google Scholar

    [35]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [36]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [37]

    Chitambar E, de Vicente J I, Girard M W, Gour G 2017 arXiv: 1711.03835 [quant-ph]

    [38]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [39]

    Sauerwein D, Wallach N R, Gour G, Kraus B 2018 Phys. Rev. X 8 031020

    [40]

    Hebenstreit M, Spee C, Kraus B 2016 Phys. Rev. A 92 012339Google Scholar

    [41]

    Wei T C, Goldbart P M 2003 Phys. Rev. A 68 042307Google Scholar

    [42]

    Chen L, Xu A, Zhu H 2010 Phys. Rev. A 82 032301Google Scholar

    [43]

    Eisert J, Brandao F G, Audenaert K M 2007 New J. Phys. 9 46Google Scholar

    [44]

    Dür W, Cirac J I, Tarrach R 1999 Phys. Rev. Lett. 83 3562Google Scholar

    [45]

    Zhu H, Ma Z, Cao Z, Fei S M, Vedral V 2017 Phys. Rev. A 96 032316Google Scholar

    [46]

    Biswas A, Prabhu R, de Sen A, Sen U 2014 Phys. Rev. A 90 032301Google Scholar

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865Google Scholar

    [2]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001Google Scholar

    [3]

    Streltsov A, Adesso G, Plenio M B 2017 Rev. Mod. Phys. 89 041003Google Scholar

    [4]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762–764 1Google Scholar

    [5]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401Google Scholar

    [6]

    Winter A, Yang D 2016 Phys. Rev. Lett. 116 120404Google Scholar

    [7]

    Zhao M J, Ma T, Quan Q, Fan H, Pereira R 2019 Phys. Rev. A 100 012315Google Scholar

    [8]

    Zhou Y, Zhao Q, Yuan X, Ma X 2017 New J. Phys. 19 123033Google Scholar

    [9]

    Yao Y, Xiao X, Ge L, Sun C P 2015 Phys. Rev. A 92 022112Google Scholar

    [10]

    Streltsov A, Rana S, Bera M N, Lewenstein M 2017 Phys. Rev. X 7 011024

    [11]

    Kumar A 2017 Phys. Lett. A 381 991Google Scholar

    [12]

    Gao F, Qin S J, Huang W, Wen Q Y 2019 Sci. China-Phys. Mech. Astron. 62 070301Google Scholar

    [13]

    杨宇光, 张兴 2008 中国科学: 物理学 力学 天文学 38 523

    Yang Y G, Zhang X 2008 Sci. Sin.-Phys. Mech. Astron. 38 523

    [14]

    Wei C Y, Cai X Q, Liu B, Wang T Y, Gao F 2018 IEEE Trans. Comput. 67 2Google Scholar

    [15]

    Ma J, Zhou Y, Yuan X, Ma X 2019 Phys. Rev. A 99 062325Google Scholar

    [16]

    Ma J, Hakande A, Yuan X, Ma X 2019 Phys. Rev. A 99 022328Google Scholar

    [17]

    Walther P, Resch K J, Rudolph T, Schenck E, Weinfurter H, Vedral V, Aspelmeyer M, Zeilinger A 2005 Nature 434 169Google Scholar

    [18]

    Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar

    [19]

    Pan M, Qiu D 2019 Phys. Rev. A 100 012349Google Scholar

    [20]

    李海, 邹健, 邵彬, 陈雨, 华臻 2019 物理学报 68 040201Google Scholar

    Li H, Zou J, Shao B, Chen Y, Hua Z 2019 Acta Phys. Sin. 68 040201Google Scholar

    [21]

    Gao D M, Xin Y, Ye Z, Qiao X Y 2019 Int. J. Quantum Inf. 17 1950004Google Scholar

    [22]

    Liu F, Li F 2016 Quantum Inf. Process 15 4203Google Scholar

    [23]

    Liu F, Li F, Chen J, Xing W 2016 Quantum Inf. Process 15 3459Google Scholar

    [24]

    Lostaglio M, Müller M P 2019 Phys. Rev. Lett. 123 020403Google Scholar

    [25]

    Luo S, Sun Y 2019 Phys. Lett. A 383 2869Google Scholar

    [26]

    Zhao Q, Liu Y, Yuan X, Chitambar E, Ma X 2018 Phys. Rev. Lett. 120 070403Google Scholar

    [27]

    Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar

    [28]

    Gallego R, Aolita L 2015 Phys. Rev. X 5 041008

    [29]

    肖书, 郭志华, 曹怀信 2019 中国科学: 物理学 力学 天文学 49 010301

    Xiao S, Guo Z H, Cao H X 2019 Sci. Sin.-Phys. Mech Astron 49 010301

    [30]

    Lami L, Regula B, Adesso G 2019 Phys. Rev. Lett. 122 150402Google Scholar

    [31]

    Wu K D, Theurer T, Xiang G Y, Li C F, Guo G C, Plenio M B, Streltsov A 2019 arXiv: 1903.01479 v1 [quant-ph]

    [32]

    Du S, Bai Z, Guo Y 2017 Phys. Rev. A 95 029901Google Scholar

    [33]

    Brandão F G S L, Plenio M B 2008 Nat. Phys. 4 873Google Scholar

    [34]

    Contreras-Tejada P, Palazuelos C, de Vicente J I 2019 Phys. Rev. Lett. 122 120503Google Scholar

    [35]

    Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N, Adesso G 2016 Phys. Rev. Lett. 116 150502Google Scholar

    [36]

    Streltsov A, Singh U, Dhar H S, Bera M N, Adesso G 2015 Phys. Rev. Lett. 115 020403Google Scholar

    [37]

    Chitambar E, de Vicente J I, Girard M W, Gour G 2017 arXiv: 1711.03835 [quant-ph]

    [38]

    Vidal G, Tarrach R 1999 Phys. Rev. A 59 141Google Scholar

    [39]

    Sauerwein D, Wallach N R, Gour G, Kraus B 2018 Phys. Rev. X 8 031020

    [40]

    Hebenstreit M, Spee C, Kraus B 2016 Phys. Rev. A 92 012339Google Scholar

    [41]

    Wei T C, Goldbart P M 2003 Phys. Rev. A 68 042307Google Scholar

    [42]

    Chen L, Xu A, Zhu H 2010 Phys. Rev. A 82 032301Google Scholar

    [43]

    Eisert J, Brandao F G, Audenaert K M 2007 New J. Phys. 9 46Google Scholar

    [44]

    Dür W, Cirac J I, Tarrach R 1999 Phys. Rev. Lett. 83 3562Google Scholar

    [45]

    Zhu H, Ma Z, Cao Z, Fei S M, Vedral V 2017 Phys. Rev. A 96 032316Google Scholar

    [46]

    Biswas A, Prabhu R, de Sen A, Sen U 2014 Phys. Rev. A 90 032301Google Scholar

  • [1] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案. 物理学报, 2024, 73(23): 230301. doi: 10.7498/aps.73.20241382
    [2] 王东升. 通用量子计算模型: 一个资源理论的视角. 物理学报, 2024, 73(22): 220302. doi: 10.7498/aps.73.20240893
    [3] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [4] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [6] 凌中火, 王帅, 张金仓, 张逸竹, 阎天民, 江玉海. 太赫兹辅助测量铷原子超快量子相干过程的理论研究. 物理学报, 2020, 69(17): 173401. doi: 10.7498/aps.69.20200218
    [7] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控. 物理学报, 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [8] 李保民, 胡明亮, 范桁. 量子相干. 物理学报, 2019, 68(3): 030304. doi: 10.7498/aps.68.20181779
    [9] 翁羽翔, 王专, 陈海龙, 冷轩, 朱锐丹. 量子相干态的二维电子光谱测量的原理、应用和发展. 物理学报, 2018, 67(12): 127801. doi: 10.7498/aps.67.20180783
    [10] 邢容, 谢双媛, 许静平, 羊亚平. 动态光子晶体中V型三能级原子的自发辐射. 物理学报, 2017, 66(1): 014202. doi: 10.7498/aps.66.014202
    [11] 杨军, 章曦, 苗仁德. 自旋场效应晶体管中隧道磁阻的势垒相关反转效应. 物理学报, 2014, 63(21): 217202. doi: 10.7498/aps.63.217202
    [12] 韩凯, 许晓军, 周朴, 马阎星, 王小林, 刘泽金. 多波长激光主动式相干合成理论初探. 物理学报, 2011, 60(7): 074206. doi: 10.7498/aps.60.074206
    [13] 孙伟峰, 李美成, 赵连城. 低维半导体异质结中的量子相干红外发射机理理论研究. 物理学报, 2010, 59(9): 6185-6192. doi: 10.7498/aps.59.6185
    [14] 蓝海江, 庞华锋, 韦联福. 多光子激发相干态的Wigner函数. 物理学报, 2009, 58(12): 8281-8288. doi: 10.7498/aps.58.8281
    [15] 马瑞琼, 李永放, 时 坚. 量子态的非相干光时域测量. 物理学报, 2008, 57(9): 5593-5599. doi: 10.7498/aps.57.5593
    [16] 杨 军, 武文远, 龚艳春. 磁性隧道结中的量子相干输运研究. 物理学报, 2008, 57(1): 448-452. doi: 10.7498/aps.57.448
    [17] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [18] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [19] 胡振华, 黄德修. 非对称耦合量子阱吸收与色散的理论研究. 物理学报, 2005, 54(4): 1788-1793. doi: 10.7498/aps.54.1788
    [20] 郝三如. q变形量子振子的Glauber相干态. 物理学报, 1993, 42(7): 1057-1062. doi: 10.7498/aps.42.1057
计量
  • 文章访问数:  7385
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-21
  • 修回日期:  2019-09-12
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回