搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进MRT-LBM的近壁空泡溃灭模拟及诱发壁面损伤的作用力机制

柴廉洁 周国龙 武伟 张家忠

引用本文:
Citation:

基于改进MRT-LBM的近壁空泡溃灭模拟及诱发壁面损伤的作用力机制

柴廉洁, 周国龙, 武伟, 张家忠
cstr: 32037.14.aps.74.20241114

Simulation of near-wall bubble collapse and research on load mechanism of wall damage based on improved multi-relaxation-time lattice Boltzmann method

CHAI Lianjie, ZHOU Guolong, WU Wei, ZHANG Jiazhong
cstr: 32037.14.aps.74.20241114
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 使用改进的‌多松弛时间格子玻尔兹曼方法(MRT-LBM)‌对近壁空泡溃灭演化过程开展了数值模拟, 并对空泡溃灭诱发壁面损伤的作用力机制进行研究. 首先, 对改进外力格式的多松弛伪势模型开展Laplace定律验证和热力学一致性验证; 然后, 结合改进外力格式的多松弛伪势模型对近壁空泡溃灭演化进行数值模拟, 获得了近壁空泡溃灭过程的流场细节, 着重研究了溃灭过程中空泡的动力学行为. 研究发现, 近壁空泡溃灭过程中释放的微射流主要来源于第1次溃灭, 而冲击波的产生来源于第1次溃灭和第2次溃灭, 且第2次溃灭产生的冲击波强度显著高于第1次溃灭产生的冲击波; 进一步, 对近壁空泡溃灭过程中壁面处压力与速度的分布特性进行分析, 研究空泡溃灭作用于壁面的载荷机制. 研究发现, 壁面受到冲击波和微射流的共同作用, 冲击波作用范围大, 造成面损伤, 而微射流作用在局部区域, 造成点状破坏. 研究结果揭示近壁空泡溃灭演化过程以及空泡溃灭诱发壁面损伤的作用力机制, 为进一步利用空化效应及减少空蚀带来的破坏提供理论支撑.
    To reveal the load mechanism of wall damage induced by bubble collapse, the near-wall cavitation bubble collapse evolution is numerically simulated using an improved multi-relaxation-time lattice Boltzmann method (MRT-LBM), and the dynamic behavior of near-wall cavitation bubble is systematically analyzed. First, the improved multi-relaxation pseudopotential model with a modified force scheme is introduced and validated through the Laplace law and thermodynamic consistency. Subsequently, the near-wall bubble collapse evolution is simulated using the improved model, and the process of the bubble collapse evolution is obtained. The accuracy of the numerical simulation results is confirmed by comparing with previous experimental results. Based on the obtained flow field information, including velocity and pressure distributions, the dynamic behaviors during the bubble collapse are thoroughly analyzed. The results show that the micro-jets released during the near-wall bubble collapse primarily originate from the first collapse, while the shock waves are generated during both the first and the second collapse. Notably, the intensity of the shock waves produced during the second collapse is significantly higher than that during the first collapse. Furthermore, the distribution characteristics of pressure and velocity on the wall during the near-wall bubble collapse are analyzed, revealing the load mechanism of wall damage caused by bubble collapse. The results show that the wall is subjected to the combined effects of shock waves and micro-jets: shock waves cause large-area surface damage due to their extensive propagation range, whereas micro-jets lead to concentrated point damage with their localized high-velocity impact. In summary, this study elucidates the evolution of near-wall bubble collapse and the load mechanism of wall damage induced by bubble collapse, which provides theoretical support for further utilizing the cavitation effects and mitigation of cavitation-induced damage.
      通信作者: 张家忠, jzzhang@mail.xjtu.edu.cn
    • 基金项目: 国家科技重大专项(批准号: 779608000000200007)资助的课题.
      Corresponding author: ZHANG Jiazhong, jzzhang@mail.xjtu.edu.cn
    • Funds: Project supported by the National Science and Technology Major Project, China (Grant No. 779608000000200007).
    [1]

    任嘉乐 2023 硕士学位论文(兰州: 兰州理工大学)

    Ren J L 2023 M. S. Thesis (Lanzhou: Lanzhou University of Technology

    [2]

    米建东 2022 硕士学位论文(兰州: 兰州理工大学)

    Mi J D 2022 M. S. Thesis (Lanzhou: Lanzhou University of Technology

    [3]

    Kling C L, Hammitt F G 1972 J. Basic Eng. 94 825Google Scholar

    [4]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283Google Scholar

    [5]

    Li B B, Jia W, Zhang H C, Lu J 2014 Shock Waves 24 317Google Scholar

    [6]

    Aganin A A, Ilgamov M A, Kosolapova L A, Malakhov V G 2016 Thermophys. Aeromech. 23 211Google Scholar

    [7]

    任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702Google Scholar

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702Google Scholar

    [8]

    李旭晖, 单肖文, 段文洋 2022 空气动力学学报 40 46Google Scholar

    Li X H, Shan X W, Duan W Y 2022 Acta Aerodyn. Sin. 40 46Google Scholar

    [9]

    Li X H, Shi Y Y, Shan X W 2019 Phys. Rev. E 100 013301Google Scholar

    [10]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [11]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [12]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703Google Scholar

    [13]

    Shan M L, Zhu C P, Zhou X, Yin C, Han Q B 2016 J. Hydrodyn. 28 442Google Scholar

    [14]

    Shan M L, Zhu Y, Yao C, Han Q B, Zhu C P 2017 J. Appl. Math. Phys. 5 1243Google Scholar

    [15]

    He X L, Zhang J M, Yang Q, Peng H N, Xu W L 2020 Phys. Rev. E 102 063306Google Scholar

    [16]

    Li Q, Luo K H, Li X J 2013 Phys. Rev. E 87 053301Google Scholar

    [17]

    Li Q, Luo K H, Li X J 2012 Phys. Rev. E 86 016709Google Scholar

    [18]

    Peng H N, Zhang J M, He X L, Wang Y R 2021 Comput. Fluids 217 104817Google Scholar

    [19]

    Liu Y, Peng Y 2021 J. Mar. Sci. Eng. 9 219Google Scholar

    [20]

    Yang Y, Shan M L, Kan X F, Shangguan Y Q, Han Q B 2020 Ultrason. Sonochem. 62 104873Google Scholar

    [21]

    Yang Y, Shan M L, Su N N, Kan X F, Shangguan Y Q, Han Q B 2022 Int. Commun. Heat Mass 134 105988Google Scholar

    [22]

    何雅玲, 李庆, 王勇, 童自翔 2023 格子Boltzmann方法的理论及应用 (北京: 高等教育出版社) 第52页

    He Y L, Li Q, Wang Y, Tong Z X 2023 Lattice Boltzmann Method: Theory and Applications (Beijing: Higher Education Press) p52

    [23]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第46页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p46

    [24]

    任晟 2014 博士学位论文(西安: 西安交通大学)

    Ren S 2014 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [25]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301Google Scholar

    [26]

    Huang H, Sukop M C, Lu X 2015 Multiphase lattice Boltzmann methods: Theory and Application (New Jersey: Wiley Blackwell) p20

    [27]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 042101Google Scholar

    [28]

    张新明, 周超英, Islam Shams, 刘家琦 2009 物理学报 58 8406Google Scholar

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406Google Scholar

    [29]

    Sofonea V, Biciuşcă T, Busuioc S, Ambruş V E, Gonnella G, Lamura A 2018 Phys. Rev. E 97 023309Google Scholar

    [30]

    Philipp A, Lauterborn W 1998 J. Fluid Mech. 361 75Google Scholar

  • 图 1  Laplace定律验证

    Fig. 1.  Verification of Laplace’s law

    图 2  共存密度数值解与解析解

    Fig. 2.  Numerical and analytical solutions for coexistence density.

    图 3  模拟结果与R-P方程对比

    Fig. 3.  Simulation results and R-P equation results.

    图 4  近壁空泡溃灭模型

    Fig. 4.  Near-wall bubble collapse model.

    图 5  近壁空泡溃灭外形的演化数值模拟结果与实验结果对比 (a)数值模拟结果, $\lambda = 1.6, {\text{ }}{r_0} = 80$; (b)实验结果, $\lambda = 1.6,{r_0} = $$ 1.45 \times {10^{ - 3}}$ m

    Fig. 5.  Comparison of numerical simulation results and experimental results on the evolution of near-wall bubble collapse shape: (a) Numerical simulation results, $\lambda = 1.6, {\text{ }}{r_0} = 80$; (b) experimental results, $\lambda = 1.6, {\text{ }}{r_0} = 1.45 \times {10^{ - 3}}$ m.

    图 6  近壁空泡溃灭密度场演化过程 (a) t = 1 ts; (b) t = 300 ts; (c) t = 500 ts; (d) t = 600 ts; (e) t = 700 ts; (f) t = 850 ts; (g) t = 931 ts; (h) t = 950 ts; (i) t = 1050 ts; (j) t = 1150 ts; (k) t = 1175 ts; (l) t = 1180 ts

    Fig. 6.  Density evolution of near-wall bubble: (a) t = 1 ts; (b) t = 300 ts; (c) t = 500 ts; (d) t = 600 ts; (e) t = 700 ts; (f) t = 850 ts; (g) t = 931 ts; (h) t = 950 ts; (i) t = 1050 ts; (j) t = 1150 ts; (k) t = 1175 ts; (l) t = 1180 ts.

    图 7  近壁空泡溃灭压力场演化过程 (a) t = 600 ts; (b) t = 700 ts; (c) t = 850 ts; (d) t = 931 ts; (e) t = 950 ts; (f) t = 1050 ts; (g) t = 1150 ts; (h) t = 1175 ts; (i) t = 1180 ts

    Fig. 7.  Pressure evolution of near-wall bubble: (a) t = 600 ts; (b) t = 700 ts; (c) t = 850 ts; (d) t = 931 ts; (e) t = 950 ts; (f) t = 1050 ts; (g) t = 1150 ts; (h) t = 1175 ts; (i) t = 1180 ts.

    图 8  近壁空泡溃灭速度场演化过程 (a) t = 600 ts; (b) t = 850 ts; (c) t = 950 ts; (d) t = 1050 ts; (e) t = 1150 ts; (f) t = 1180 ts

    Fig. 8.  Velocity evolution of near-wall bubble: (a) t = 600 ts; (b) t = 850 ts; (c) t = 950 ts; (d) t = 1050 ts; (e) t = 1150 ts; (f) t = 1180 ts.

    图 9  各时间步壁面处压力分布

    Fig. 9.  Pressure distribution on the wall at each time step.

    图 10  各时间步壁面处速度分布

    Fig. 10.  Velocity distribution on the wall at each time step.

  • [1]

    任嘉乐 2023 硕士学位论文(兰州: 兰州理工大学)

    Ren J L 2023 M. S. Thesis (Lanzhou: Lanzhou University of Technology

    [2]

    米建东 2022 硕士学位论文(兰州: 兰州理工大学)

    Mi J D 2022 M. S. Thesis (Lanzhou: Lanzhou University of Technology

    [3]

    Kling C L, Hammitt F G 1972 J. Basic Eng. 94 825Google Scholar

    [4]

    Plesset M S, Chapman R B 1971 J. Fluid Mech. 47 283Google Scholar

    [5]

    Li B B, Jia W, Zhang H C, Lu J 2014 Shock Waves 24 317Google Scholar

    [6]

    Aganin A A, Ilgamov M A, Kosolapova L A, Malakhov V G 2016 Thermophys. Aeromech. 23 211Google Scholar

    [7]

    任晟, 张家忠, 张亚苗, 卫丁 2014 物理学报 63 024702Google Scholar

    Ren S, Zhang J Z, Zhang Y M, Wei D 2014 Acta Phys. Sin. 63 024702Google Scholar

    [8]

    李旭晖, 单肖文, 段文洋 2022 空气动力学学报 40 46Google Scholar

    Li X H, Shan X W, Duan W Y 2022 Acta Aerodyn. Sin. 40 46Google Scholar

    [9]

    Li X H, Shi Y Y, Shan X W 2019 Phys. Rev. E 100 013301Google Scholar

    [10]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815Google Scholar

    [11]

    Shan X W, Chen H D 1994 Phys. Rev. E 49 2941Google Scholar

    [12]

    Sukop M C, Or D 2005 Phys. Rev. E 71 046703Google Scholar

    [13]

    Shan M L, Zhu C P, Zhou X, Yin C, Han Q B 2016 J. Hydrodyn. 28 442Google Scholar

    [14]

    Shan M L, Zhu Y, Yao C, Han Q B, Zhu C P 2017 J. Appl. Math. Phys. 5 1243Google Scholar

    [15]

    He X L, Zhang J M, Yang Q, Peng H N, Xu W L 2020 Phys. Rev. E 102 063306Google Scholar

    [16]

    Li Q, Luo K H, Li X J 2013 Phys. Rev. E 87 053301Google Scholar

    [17]

    Li Q, Luo K H, Li X J 2012 Phys. Rev. E 86 016709Google Scholar

    [18]

    Peng H N, Zhang J M, He X L, Wang Y R 2021 Comput. Fluids 217 104817Google Scholar

    [19]

    Liu Y, Peng Y 2021 J. Mar. Sci. Eng. 9 219Google Scholar

    [20]

    Yang Y, Shan M L, Kan X F, Shangguan Y Q, Han Q B 2020 Ultrason. Sonochem. 62 104873Google Scholar

    [21]

    Yang Y, Shan M L, Su N N, Kan X F, Shangguan Y Q, Han Q B 2022 Int. Commun. Heat Mass 134 105988Google Scholar

    [22]

    何雅玲, 李庆, 王勇, 童自翔 2023 格子Boltzmann方法的理论及应用 (北京: 高等教育出版社) 第52页

    He Y L, Li Q, Wang Y, Tong Z X 2023 Lattice Boltzmann Method: Theory and Applications (Beijing: Higher Education Press) p52

    [23]

    郭照立, 郑楚光 2009 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第46页

    Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p46

    [24]

    任晟 2014 博士学位论文(西安: 西安交通大学)

    Ren S 2014 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University

    [25]

    Li Q, Luo K H, Kang Q J, Chen Q 2014 Phys. Rev. E 90 053301Google Scholar

    [26]

    Huang H, Sukop M C, Lu X 2015 Multiphase lattice Boltzmann methods: Theory and Application (New Jersey: Wiley Blackwell) p20

    [27]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 042101Google Scholar

    [28]

    张新明, 周超英, Islam Shams, 刘家琦 2009 物理学报 58 8406Google Scholar

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406Google Scholar

    [29]

    Sofonea V, Biciuşcă T, Busuioc S, Ambruş V E, Gonnella G, Lamura A 2018 Phys. Rev. E 97 023309Google Scholar

    [30]

    Philipp A, Lauterborn W 1998 J. Fluid Mech. 361 75Google Scholar

  • [1] 贾宇皓, 张晓敏, 赵志鹏, 吴琼, 张林林. 超声溶栓中多气泡协同空蚀效应的数值分析. 物理学报, 2025, 74(14): . doi: 10.7498/aps.74.20250430
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟. 物理学报, 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [4] 张乾毅, 韦华健, 李华兵. 基于晶格玻尔兹曼方法的多段淋巴管模型. 物理学报, 2021, 70(21): 210501. doi: 10.7498/aps.70.20210514
    [5] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [6] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 何郁波, 唐先华, 林晓艳. 基于格子玻尔兹曼方法的一类FitzHugh-Nagumo系统仿真研究. 物理学报, 2016, 65(15): 154701. doi: 10.7498/aps.65.154701
    [9] 蒋燕华, 陈佳民, 施娟, 周锦阳, 李华兵. 三角波脉动流通栓的晶格玻尔兹曼方法模型. 物理学报, 2016, 65(7): 074701. doi: 10.7498/aps.65.074701
    [10] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [11] 周锦阳, 施娟, 陈佳民, 李华兵. 脉动流血液通栓的晶格玻尔兹曼模型. 物理学报, 2014, 63(19): 194701. doi: 10.7498/aps.63.194701
    [12] 冯鑫, 李川, 胡开群. 基于深度玻尔兹曼模型的红外与可见光图像融合. 物理学报, 2014, 63(18): 184202. doi: 10.7498/aps.63.184202
    [13] 薛泽, 施娟, 王立龙, 周锦阳, 谭惠丽, 李华兵. 粒子在锥形管中运动的晶格玻尔兹曼方法研究. 物理学报, 2013, 62(8): 084702. doi: 10.7498/aps.62.084702
    [14] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [15] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [16] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] 施娟, 李剑, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究颗粒在涡流中的运动. 物理学报, 2009, 58(8): 5174-5178. doi: 10.7498/aps.58.5174
    [19] 邓敏艺, 施 娟, 李华兵, 孔令江, 刘慕仁. 用晶格玻尔兹曼方法研究螺旋波的产生机制和演化行为. 物理学报, 2007, 56(4): 2012-2017. doi: 10.7498/aps.56.2012
    [20] 许友生, 李华兵, 方海平, 黄国翔. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题. 物理学报, 2004, 53(3): 773-777. doi: 10.7498/aps.53.773
计量
  • 文章访问数:  409
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-09
  • 修回日期:  2025-02-26
  • 上网日期:  2025-03-20

/

返回文章
返回