-
石墨烯在未来微电子学领域有极大的应用前景,但是其零带隙的特点阻碍了石墨烯在半导体领域的应用.研究发现,打开室温下可用的石墨烯带隙所需要的石墨烯纳米结构尺度在10 nm以下,这一尺度的纳米结构一方面制备比较困难,另一方面器件可承载的驱动电流较小.因此,如何实现亚10 nm石墨烯纳米结构的有效加工以及如何在有效调控带隙的基础上增大石墨烯器件可承载的驱动电流,还需要进一步的研究.本文首先研究了利用聚甲基丙烯酸甲酯/铬(PMMA/Cr)双层结构工艺,通过刻蚀时间的控制,利用电子束曝光及刻蚀工艺实现了亚10 nm石墨烯纳米结构的可控制备.同时设计并制备了单排孔石墨烯条带结构,该结构打开的带隙远大于相同特征宽度石墨烯纳米带所能打开带隙的大小.该结构在有效打开石墨烯带隙的同时,增加了石墨烯纳米结构可以承载的驱动电流,有利于石墨烯在未来微电子领域的应用.Graphene has potential applications in future microelectronics due to its novel electronic and mechanical properties. However, the lack of the bandgap in graphene poses a challenge and hinders its applications. In order to be able to work in ambient condition, gap engineering of graphene with nanostructure needs about sub-10 nm characteristic size, which increases the difficulty of fabrication and leads to less driving current that can be borne. In this paper, a new method to fabricate sub-10 nm graphene nanostructures is developed. With PMMA/Cr bilayer structure, sub-10 nm graphene nanostructures can be obtained precisely and repeatedly through controlling the etching time. Meanwhile, a new device based on graphene nanoconstrictions connected in parallel is designed and fabricated, whose band gap is bigger than that of graphene nanoribbon and whose characteristic width is the same as that of graphene nanoribbon. With the graphene nanoconstrictions connected in parallel, the band gap of the graphene can be adjusted effectively and the driving current can be significantly increased, which is very important for future practical applications of graphene.
-
Keywords:
- graphene /
- bandgap tuning /
- nanostructures
[1] Son Y W, Cohen M L, Louis S G 2006 Nature 444 347
[2] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610
[3] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315
[4] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[5] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001
[6] Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425
[7] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020
[8] Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481
[9] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430
[10] Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704
[11] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
[12] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820
[13] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[14] Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451
[15] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[16] Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801
[17] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[18] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[19] Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578
[20] Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803
[21] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[22] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[23] Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596
[24] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[25] Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362
[26] Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651
[27] Power S R, Jauho A P 2014 Phys. Rev. B 90 115408
[28] Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125
[29] Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454
[30] Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096
[31] Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190
[32] Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366
[33] Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462
[34] Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634
[35] Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748
[36] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258
[37] Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111
[38] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[39] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[40] Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005
[41] Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)
-
[1] Son Y W, Cohen M L, Louis S G 2006 Nature 444 347
[2] Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610
[3] Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315
[4] Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427
[5] Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001
[6] Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425
[7] Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020
[8] Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481
[9] Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430
[10] Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704
[11] Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951
[12] Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820
[13] Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151
[14] Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451
[15] Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805
[16] Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801
[17] Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877
[18] Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083
[19] Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578
[20] Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803
[21] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
[22] Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872
[23] Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596
[24] Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558
[25] Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362
[26] Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651
[27] Power S R, Jauho A P 2014 Phys. Rev. B 90 115408
[28] Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125
[29] Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454
[30] Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096
[31] Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190
[32] Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366
[33] Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462
[34] Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634
[35] Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748
[36] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258
[37] Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111
[38] Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435
[39] Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301
[40] Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005
[41] Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)
计量
- 文章访问数: 8912
- PDF下载量: 521
- 被引次数: 0