搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯纳米结构的制备及带隙调控研究

张慧珍 李金涛 吕文刚 杨海方 唐成春 顾长志 李俊杰

引用本文:
Citation:

石墨烯纳米结构的制备及带隙调控研究

张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰

Fabrication of graphene nanostructure and bandgap tuning

Zhang Hui-Zhen, Li Jin-Tao, Lü Wen-Gang, Yang Hai-Fang, Tang Cheng-Chun, Gu Chang-Zhi, Li Jun-Jie
PDF
导出引用
  • 石墨烯在未来微电子学领域有极大的应用前景,但是其零带隙的特点阻碍了石墨烯在半导体领域的应用.研究发现,打开室温下可用的石墨烯带隙所需要的石墨烯纳米结构尺度在10 nm以下,这一尺度的纳米结构一方面制备比较困难,另一方面器件可承载的驱动电流较小.因此,如何实现亚10 nm石墨烯纳米结构的有效加工以及如何在有效调控带隙的基础上增大石墨烯器件可承载的驱动电流,还需要进一步的研究.本文首先研究了利用聚甲基丙烯酸甲酯/铬(PMMA/Cr)双层结构工艺,通过刻蚀时间的控制,利用电子束曝光及刻蚀工艺实现了亚10 nm石墨烯纳米结构的可控制备.同时设计并制备了单排孔石墨烯条带结构,该结构打开的带隙远大于相同特征宽度石墨烯纳米带所能打开带隙的大小.该结构在有效打开石墨烯带隙的同时,增加了石墨烯纳米结构可以承载的驱动电流,有利于石墨烯在未来微电子领域的应用.
    Graphene has potential applications in future microelectronics due to its novel electronic and mechanical properties. However, the lack of the bandgap in graphene poses a challenge and hinders its applications. In order to be able to work in ambient condition, gap engineering of graphene with nanostructure needs about sub-10 nm characteristic size, which increases the difficulty of fabrication and leads to less driving current that can be borne. In this paper, a new method to fabricate sub-10 nm graphene nanostructures is developed. With PMMA/Cr bilayer structure, sub-10 nm graphene nanostructures can be obtained precisely and repeatedly through controlling the etching time. Meanwhile, a new device based on graphene nanoconstrictions connected in parallel is designed and fabricated, whose band gap is bigger than that of graphene nanoribbon and whose characteristic width is the same as that of graphene nanoribbon. With the graphene nanoconstrictions connected in parallel, the band gap of the graphene can be adjusted effectively and the driving current can be significantly increased, which is very important for future practical applications of graphene.
      通信作者: 杨海方, hfyang@iphy.ac.cn;czgu@iphy.ac.cn ; 顾长志, hfyang@iphy.ac.cn;czgu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:61390503,91323304,11674387,11574385,11104334,11504414)和国家重点研发计划(批准号:2016YFA0200800,2016YFA0200400,2016YFB0100500)资助的课题.
      Corresponding author: Yang Hai-Fang, hfyang@iphy.ac.cn;czgu@iphy.ac.cn ; Gu Chang-Zhi, hfyang@iphy.ac.cn;czgu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390503, 91323304, 11674387, 11574385, 11104334, 11504414) and the National Key RD Program of China (Grant Nos. 2016YFA0200800, 2016YFA0200400, 2016YFB0100500).
    [1]

    Son Y W, Cohen M L, Louis S G 2006 Nature 444 347

    [2]

    Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610

    [3]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [4]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [5]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001

    [6]

    Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425

    [7]

    Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020

    [8]

    Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481

    [9]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [10]

    Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704

    [11]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [12]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820

    [13]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [14]

    Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451

    [15]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801

    [17]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [18]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [19]

    Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578

    [20]

    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [21]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [22]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [23]

    Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596

    [24]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [25]

    Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362

    [26]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651

    [27]

    Power S R, Jauho A P 2014 Phys. Rev. B 90 115408

    [28]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [29]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454

    [30]

    Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096

    [31]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190

    [32]

    Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366

    [33]

    Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [34]

    Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634

    [35]

    Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748

    [36]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [37]

    Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111

    [38]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [39]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [40]

    Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005

    [41]

    Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)

  • [1]

    Son Y W, Cohen M L, Louis S G 2006 Nature 444 347

    [2]

    Elias D, Nair R, Mohiuddin T, Morozov S, Blake P, Halsall M, Ferrari A, Boukhvalov D, Katsnelson M, Geim A 2009 Science 323 610

    [3]

    Balog R, Jorgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nat. Mater. 9 315

    [4]

    Gorjizadeh N, Farajian A A, Esfarjani K, Kawazoe Y 2008 Phys. Rev. B 78 155427

    [5]

    Robinson J T, Burgess J S, Junkermeier C E, Badescu S C, Reinecke T L, Perkins F K, Zalalutdniov M K, Baldwin J W, Culbertson J C, Sheehan P E 2010 Nano Lett. 10 3001

    [6]

    Li X, Fan L, Li Z, Wang K, Zhong M, Wei J, Wu D, Zhu H 2012 Adv. Energy Mater. 2 425

    [7]

    Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z 2011 Adv. Mater. 23 1020

    [8]

    Some S, Kim J, Lee K, Kulkarni A, Yoon Y, Lee S, Kim T, Lee H 2012 Adv. Mater. 24 5481

    [9]

    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang Z F, Storr K, Balicas L, Liu F, Ajayan P M 2010 Nat. Mater. 9 430

    [10]

    Pandey R R, Fukumori M, Yousefi A T, Eguchi M, Tanaka D, Ogawa T, Tanaka H 2017 Nanotechnology 28 175704

    [11]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951

    [12]

    Zhang Y, Tang T T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, ShenY R, Wang F 2009 Nature 459 820

    [13]

    Oostinga J B, Heersche H B, Liu X L, Morpurgo A F, Vandersypen L M K 2008 Nat. Mater. 7 151

    [14]

    Vu T T, Nguyen T K Q, Huynh A H, Phan T K L, Tran V T 2017 Superlattice Microst. 102 451

    [15]

    Han M Y, Oezyilmaz B, Zhang Y, Kim P 2007 Phys. Rev. Lett. 98 206805

    [16]

    Han M Y, Brant J C, Kim P 2010 Phys. Rev. Lett. 104 056801

    [17]

    Jiao L, Zhang L, Wang X, Diankov G, Dai H 2009 Nature 458 877

    [18]

    Bai J, Duan X, Huang Y 2009 Nano Lett. 9 2083

    [19]

    Pan Z, Liu N, Fu L, Liu Z 2011 J. Am. Chem. Soc. 133 17578

    [20]

    Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H 2008 Phys. Rev. Lett. 100 206803

    [21]

    Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229

    [22]

    Kosynkin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K, Tour J M 2009 Nature 458 872

    [23]

    Cataldo F, Compagnini G, Patane G, Ursini O, Angelini G, Ribic P R, Margaritondo G, Cricenti A, Palleschi G, Valentini F 2010 Carbon 48 2596

    [24]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [25]

    Kim K, Sussman A, Zettl A 2010 ACS Nano 4 1362

    [26]

    Kato T, Hatakeyama R 2012 Nat. Nanotech. 7 651

    [27]

    Power S R, Jauho A P 2014 Phys. Rev. B 90 115408

    [28]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125

    [29]

    Liang X G, Jung Y S, Wu S W, Ismach A, Olynick D L, Cabrini S, Bokor J 2010 Nano Lett. 10 2454

    [30]

    Yang Y B, Yang X D, Zou X M, Wu S T, Wan D, Cao A Y, Liao L, Yuan Q, Duan X F 2017 Adv. Funct. Mater. 27 1604096

    [31]

    Bai J, Zhong X, Jiang S, Huang Y, Duan X 2010 Nat. Nanotech. 5 190

    [32]

    Elias A L, Motello-Mendez A R, Meneses-Rodriguez D, Ramirez-Gonzalez V J, Ci L, Munoz-Sandoval E, Ajayan P M, Terrones H, Terrnes M 2010 Nano Lett. 10 366

    [33]

    Suk J W, Lee W H, Lee J, Chou H, Pine R D, Hao Y, Akinwande D, Ruoff R S 2013 Nano Lett. 13 1462

    [34]

    Pisula W, Feng X, Mllen K 2010 Adv. Mater. 22 3634

    [35]

    Lu Y, Goldsmith B, Strachan D R, Lim J H, Luo Z, Johnson A 2010 Small 6 2748

    [36]

    Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T, Horn K 2008 Nat. Mater. 7 258

    [37]

    Wang E, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111

    [38]

    Gui G, Li J, Zhong J 2008 Phys. Rev. B 78 075435

    [39]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301

    [40]

    Li Z Z, Liu Z F, Liu Z R 2017 Nano Res. 10 2005

    [41]

    Solymar L, Walsh D, Syms R R 2014 Electrical Properties of Materials (New York: Oxford University Press)

  • [1] 段谕, 戴小康, 吴晨晨, 杨晓霞. 可调谐的声学型石墨烯等离激元增强纳米红外光谱. 物理学报, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [2] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [3] 董慧莹, 秦晓茹, 薛文瑞, 程鑫, 李宁, 李昌勇. 涂覆石墨烯的非对称椭圆电介质纳米并行线的模式分析. 物理学报, 2020, 69(23): 238102. doi: 10.7498/aps.69.20201041
    [4] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [5] 王天会, 李昂, 韩柏. 石墨炔/石墨烯异质结纳米共振隧穿晶体管第一原理研究. 物理学报, 2019, 68(18): 187102. doi: 10.7498/aps.68.20190859
    [6] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用. 物理学报, 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [7] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [8] 彭艳玲, 薛文瑞, 卫壮志, 李昌勇. 涂覆石墨烯的非对称并行电介质纳米线波导的模式特性分析. 物理学报, 2018, 67(3): 038102. doi: 10.7498/aps.67.20172016
    [9] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [10] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [11] 白清顺, 沈荣琦, 何欣, 刘顺, 张飞虎, 郭永博. 纳米微结构表面与石墨烯薄膜的界面黏附特性研究. 物理学报, 2018, 67(3): 030201. doi: 10.7498/aps.67.20172153
    [12] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [13] 张辉, 蔡晓明, 郝振亮, 阮子林, 卢建臣, 蔡金明. 石墨烯纳米带的制备与电学特性调控. 物理学报, 2017, 66(21): 218103. doi: 10.7498/aps.66.218103
    [14] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [15] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [18] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [19] 姚海峰, 谢月娥, 欧阳滔, 陈元平. 嵌入线型缺陷的石墨纳米带的热输运性质. 物理学报, 2013, 62(6): 068102. doi: 10.7498/aps.62.068102
    [20] 武祥, 蔡伟, 曲凤玉. ZnO一维纳米结构的形貌调控与亲疏水性研究. 物理学报, 2009, 58(11): 8044-8049. doi: 10.7498/aps.58.8044
计量
  • 文章访问数:  8912
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 修回日期:  2017-08-14
  • 刊出日期:  2017-11-05

/

返回文章
返回