搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散光学模型的40Ca核子散射数据计算

赵岫鸟 杜文青

引用本文:
Citation:

基于色散光学模型的40Ca核子散射数据计算

赵岫鸟, 杜文青

Calculation of nucleon scattering on 40Ca based on dispersive optical model

Zhao Xiu-Niao, Du Wen-Qing
PDF
HTML
导出引用
  • 对钙同位素核数据的研究具有重要的理论价值和应用前景, 其中40Ca作为天然钙最主要的同位素, 是一种重要的材料核素. 本文采用色散光学模型对球形核40Ca的核子弹性散射数据进行计算. 通过考虑色散光学模型势中实部势的非定域性以及虚部势的壳间隙结构, 实现了对40Ca相关核子散射数据的良好描述, 其中包括中子总截面、核子弹性散射角分布以及分析本领. 此外, 本文计算了色散光学模型势的实部体积分, 其随能量的变化图像在费米能附近出现了明显的色散峰结构.
    Spherical nucleus 40Ca is important structural and alloy material nucleus. Based on important theoretical value and application prospect of nuclear data of calcium isotopes, nucleon-nucleus scattering data on 40Ca nucleus, the main isotopes of natural calcium, are calculated by using dispersive optical model (DOM). The dispersive optical model potential is defined by energy-dependent real potentials, imaginary potentials, and also by the corresponding dispersive contributions to the real potential which are calculated analytically from the corresponding imaginary potentials by using a dispersion relation that follow from the requirement of causality. By fit simultaneously scattering experimental data for neutron and proton, an isospin-dependent dispersive optical model potential containing a dispersive term is derived. This derived potential in this work considers the nonlocality in the real “Hartree-Fock” potential $ V_{\rm{HF}} $ and introduces the shell gap in the definition of nuclear imaginary volume, surface and spin-orbit potentials near the Fermi energy. This dispersive optical model potential shows a good description of nucleon-nucleus scattering data on 40Ca nucleus up to 200 MeV including neutron total cross sections, neutron elastic scattering angular distributions, proton elastic scattering angular distributions, neutron analyzing powers and proton analyzing powers. In addition, the energy dependencies of calculated real volume integrals of dispersive optical model potential is shown, and a typical dispersive hump is seen around the Fermi energy. This dispersive hump behavior naturally obtained from dispersion relations, and allows the dispersion optical potential to get rid of energy dependent geometry, thus avoiding the use of a radius dependent on energy.
      Corresponding author: Du Wen-Qing, duwenqing@qymail.bhu.edu.cn
    [1]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [2]

    Mahaux C, Sartor R 1986 Phys. Rev. Lett. 57 3015Google Scholar

    [3]

    Morillon B, Romain P 2004 Phys. Rev. C 70 014601Google Scholar

    [4]

    Morillon B, Romain P 2006 Phys. Rev. C 74 014601Google Scholar

    [5]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S 2005 Phys. Rev. C 72 024604Google Scholar

    [6]

    Capote R, Soukhovitskiĩ E Sh, Quesada J M, Chiba S 2005 Phys. Rev. C 72 064610Google Scholar

    [7]

    Hao L J, Sun W L, Soukhovitskiĩ E Sh 2008 J. Phys. G: Nucl. Part. Phys. 35 095103Google Scholar

    [8]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin G, Soukhovitskii E Sh, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [9]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [10]

    Dickhoff W H, Charity R J 2019 Prog. Part. Nucl. Phys. 105 252Google Scholar

    [11]

    Zhao X N, Sun W L, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M, Capote R 2019 J. Phys. G: Nucl. Part. Phys. 46 055103Google Scholar

    [12]

    Zhao X N, Sun W L, Capote R, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [13]

    Zhao X N, Du W Q, Capote R, Soukhovitskiĩ E Sh 2023 Phys. Rev. C 107 064606Google Scholar

    [14]

    Perey F, Buck B 1962 Nucl. Phys. 32 353Google Scholar

    [15]

    Brown G E, Rho M 1981 Nucl. Phys. A 372 397Google Scholar

    [16]

    Delaroche J P, Wang Y, Rapaport J 1989 Phys. Rev. C 39 391Google Scholar

    [17]

    Molina A, Capote R, Quesada J M, Lozano M 2002 Phys. Rev. C 65 034616Google Scholar

    [18]

    Mahaux C, Sartor R 1991 Nucl. Phys. A 528 253Google Scholar

    [19]

    Lane A M 1962 Phys. Rev. Lett. 8 171Google Scholar

    [20]

    Lane A M 1962 Nucl. Phys. 35 676Google Scholar

    [21]

    Sukhovitskiĩ E Sh, Lee Y O, Chang J, Chiba S, Iwamoto O 2000 Phys. Rev. C 62 044605Google Scholar

    [22]

    EXchange FORmat database (EXFOR) is maintained by the Network of Nuclear Reaction Data Centers (see www-nds.iaea.org/nrdc/). Data available online (e.g., at www-nds.iaea.org/exfor/).

  • 图 1  40Ca中子诱发核反应计算中, 光学势各项深度随能量的变化情况

    Fig. 1.  Energy dependence of the DOM potential depths calculated for neutron induced reactions on 40Ca.

    图 2  40Ca的中子总截面计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Fig. 2.  Comparison of the calculated total cross section for 40Ca with calculations using the K-D potential and measurements.

    图 3  40Ca的中子弹性散射角分布计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Fig. 3.  Comparison of neutron elastic scattering angular distributions for 40Ca with calculations using the K-D potential and measurements.

    图 4  40Ca的质子弹性散射角分布计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Fig. 4.  Comparison of proton elastic scattering angular distributions for 40Ca with calculations using the K-D potential and measurements.

    图 5  40Ca的中子弹性散射分析本领计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Fig. 5.  Neutron elastic scattering analyzing powers for 40Ca compared with calculations using the K-D potential and the experimental data.

    图 6  40Ca的质子弹性散射分析本领计算结果与K-D光学势给出的计算结果以及相关实验数据的比较

    Fig. 6.  Proton elastic scattering analyzing powers for 40Ca compared with calculations using the K-D potential and the experimental data.

    图 7  40Ca的中子诱发核反应计算中DOM势实部体积分随能量的变化情况, 其中右边纵坐标度量$V_{\rm{HF}}$势和总的实部势, 左边纵坐标度量色散修正项

    Fig. 7.  Energy dependencies of calculated real volume integrals of dispersive optical model potential for neutron induced reactions on 40Ca. Volume integrals of and total real potential by using right Y-axis, the volume integrals of dispersive terms by using left Y-axis.

    表 1  40Ca中子诱发核反应计算中的DOM势参数

    Table 1.  DOM potential parameters for nucleon induced reactions on 40Ca.

    Volume Surface Spin-orbit couple Coulomb
    Real $V_{0}$ = 85.93$\rm{MeV}$ $ V_{\rm{so} } $ = 6.1$\rm{MeV}$ $C_{\rm{Coul}}$ = 1.0$\rm{MeV}$
    potential $\lambda_{\rm{HF}}$ = 0.94$\rm{MeV}^{-1}$ Dispersive $ \lambda_{\rm{so} } $ = 0.004$\rm{MeV}^{-1}$
    $ C_{\rm{viso} } $ = 24$\rm{MeV}$
    Imaginary $A_{\rm{v}}$ = 13.36$\rm{MeV}$ $W_{0}$ = 17.67$\rm{MeV}$ $ W_{\rm{so} } $ = –3.1$\rm{MeV}$
    potential $B_{\rm{v}}$ = 86.63$\rm{MeV}$ $B_{\rm{s}}$ = 11.74$\rm{MeV}$ $ B_{\rm{so} } $ = 160$\rm{MeV}$
    $E_{\rm{a}}$ = 56$\rm{MeV}$ $C_{\rm{s}}$ = 0.02$\rm{MeV}^{-1}$
    α = 0.380$\rm{MeV}^{1/2}$ $ C_{\rm{wiso} } $ = 22$\rm{MeV}$
    Potential $r_{\rm{HF}}$ = 1.26$\rm{fm}$ $r_{\rm{s}}$ = 1.22$\rm{fm}$ $ r_{\rm{so} } $ = 1.35$\rm{fm}$ $r_{\rm{c}}$ = 1.03$\rm{fm}$
    geometry $a_{\rm{HF}}$ = 0.622$\rm{fm}$ $a_{\rm{s}}$ = 0.502$\rm{fm}$ $ a_{\rm{so} } $ = 0.682$\rm{fm}$ $a_{\rm{c}}$ = 0.252$\rm{fm}$
    $r_{\rm{v}}$ = 1.34$\rm{fm}$
    $a_{\rm{v}}$ = 0.675$\rm{fm}$
    下载: 导出CSV
  • [1]

    Koning A J, Delaroche J P 2003 Nucl. Phys. A 713 231Google Scholar

    [2]

    Mahaux C, Sartor R 1986 Phys. Rev. Lett. 57 3015Google Scholar

    [3]

    Morillon B, Romain P 2004 Phys. Rev. C 70 014601Google Scholar

    [4]

    Morillon B, Romain P 2006 Phys. Rev. C 74 014601Google Scholar

    [5]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S 2005 Phys. Rev. C 72 024604Google Scholar

    [6]

    Capote R, Soukhovitskiĩ E Sh, Quesada J M, Chiba S 2005 Phys. Rev. C 72 064610Google Scholar

    [7]

    Hao L J, Sun W L, Soukhovitskiĩ E Sh 2008 J. Phys. G: Nucl. Part. Phys. 35 095103Google Scholar

    [8]

    Capote R, Herman M, Obložinský P, Young P G, Goriely S, Belgya T, Ignatyuk A V, Koning A J, Hilaire S, Plujko V A, Avrigeanu M, Bersillon O, Chadwick M B, Fukahori T, Ge Z G, Han Y L, Kailas S, Kopecky J, Maslov V M, Reffo G, Sin G, Soukhovitskii E Sh, Talou P 2009 Nucl. Data Sheets 110 3107Google Scholar

    [9]

    Soukhovitskiĩ E Sh, Capote R, Quesada J M, Chiba S, Martyanov D S 2016 Phys. Rev. C 94 064605Google Scholar

    [10]

    Dickhoff W H, Charity R J 2019 Prog. Part. Nucl. Phys. 105 252Google Scholar

    [11]

    Zhao X N, Sun W L, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M, Capote R 2019 J. Phys. G: Nucl. Part. Phys. 46 055103Google Scholar

    [12]

    Zhao X N, Sun W L, Capote R, Soukhovitskiĩ E Sh, Martyanov D S, Quesada J M 2020 Phys. Rev. C 101 064618Google Scholar

    [13]

    Zhao X N, Du W Q, Capote R, Soukhovitskiĩ E Sh 2023 Phys. Rev. C 107 064606Google Scholar

    [14]

    Perey F, Buck B 1962 Nucl. Phys. 32 353Google Scholar

    [15]

    Brown G E, Rho M 1981 Nucl. Phys. A 372 397Google Scholar

    [16]

    Delaroche J P, Wang Y, Rapaport J 1989 Phys. Rev. C 39 391Google Scholar

    [17]

    Molina A, Capote R, Quesada J M, Lozano M 2002 Phys. Rev. C 65 034616Google Scholar

    [18]

    Mahaux C, Sartor R 1991 Nucl. Phys. A 528 253Google Scholar

    [19]

    Lane A M 1962 Phys. Rev. Lett. 8 171Google Scholar

    [20]

    Lane A M 1962 Nucl. Phys. 35 676Google Scholar

    [21]

    Sukhovitskiĩ E Sh, Lee Y O, Chang J, Chiba S, Iwamoto O 2000 Phys. Rev. C 62 044605Google Scholar

    [22]

    EXchange FORmat database (EXFOR) is maintained by the Network of Nuclear Reaction Data Centers (see www-nds.iaea.org/nrdc/). Data available online (e.g., at www-nds.iaea.org/exfor/).

  • [1] 金阳, 张平, 李永军, 侯永, 曾交龙, 袁建民. 温稠密物质中不同价态离子分布对X-射线弹性散射光谱计算的影响. 物理学报, 2021, 70(7): 073102. doi: 10.7498/aps.70.20201483
    [2] 马引群, 马中玉. 6Li与核弹性散射的微观光学势. 物理学报, 2008, 57(1): 74-81. doi: 10.7498/aps.57.74
    [3] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, 2007, 56(5): 2986-2991. doi: 10.7498/aps.56.2986
    [4] 顾运厅, 冯禄燕, 陶军全, 黄天衡, 罗 春, 马维兴. 46.8MeV的p+12C非弹性散射. 物理学报, 2005, 54(10): 4666-4668. doi: 10.7498/aps.54.4666
    [5] 朱沛然, 江伟林, 徐天冰, 殷士端. 硅化物薄膜的质子弹性散射分析. 物理学报, 1992, 41(12): 2049-2054. doi: 10.7498/aps.41.2049
    [6] 阮景辉, 成之绪, 陈桂英. 金属氢化物(AlH3)n的热中子非弹性散射谱. 物理学报, 1981, 30(4): 538-541. doi: 10.7498/aps.30.538
    [7] 陈桂英, 成之绪, 吴享南, 阮景辉. 钯氢的热中子非弹性散射. 物理学报, 1980, 29(2): 257-259. doi: 10.7498/aps.29.257
    [8] 张禹顺, 李扬国. 高能质子与原子核的弹性和非弹性散射. 物理学报, 1977, 26(5): 449-454. doi: 10.7498/aps.26.449
    [9] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅱ). 物理学报, 1976, 25(4): 308-315. doi: 10.7498/aps.25.308
    [10] 曹昌祺, 秦旦华. 电子-质子的深度非弹性散射(Ⅰ). 物理学报, 1976, 25(3): 197-214. doi: 10.7498/aps.25.197
    [11] 胡宁. 层子摸型和深度非弹性散射. 物理学报, 1975, 24(6): 458-460. doi: 10.7498/aps.24.458
    [12] 何祚庥, 张肇西, 谢诒成. 层子模型和高能电子深度非弹性散射. 物理学报, 1975, 24(2): 115-123. doi: 10.7498/aps.24.115
    [13] 胡宁. π介子和核子在低能的散射. 物理学报, 1966, 22(3): 325-333. doi: 10.7498/aps.22.325
    [14] 刘炳东, 何国柱. 用高能核子非弹性散射研究核力有效势. 物理学报, 1966, 22(5): 569-579. doi: 10.7498/aps.22.569
    [15] 章思俊. π-N弹性散射的第二共振峰. 物理学报, 1964, 20(3): 216-226. doi: 10.7498/aps.20.216
    [16] 关洪. 低能π介子—核子散射. 物理学报, 1964, 20(3): 207-215. doi: 10.7498/aps.20.207
    [17] 方励之, 顾世杰. 有缺陷铁磁体的中子非弹性散射. 物理学报, 1963, 19(10): 673-681. doi: 10.7498/aps.19.673
    [18] 陈时, 戴元本. 高能核子—核子散射的带区近似. 物理学报, 1962, 18(6): 321-324. doi: 10.7498/aps.18.321
    [19] 罗辽复, 徐行. 关于K+介子和核子的弹性散射. 物理学报, 1962, 18(6): 291-297. doi: 10.7498/aps.18.291
    [20] 时学丹, 罗辽复, 徐行, 黄念宁. 核子与氘核散射中的极化. 物理学报, 1960, 16(6): 324-330. doi: 10.7498/aps.16.324
计量
  • 文章访问数:  1141
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-07-18
  • 上网日期:  2023-09-12
  • 刊出日期:  2023-11-20

/

返回文章
返回