搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超冷温度下钾和铯原子间弹性散射特性的精确计算

张计才 朱遵略 孙金锋

引用本文:
Citation:

超冷温度下钾和铯原子间弹性散射特性的精确计算

张计才, 朱遵略, 孙金锋

Accurate calculation of elastic scattering properties of potassium and cesium atoms at ultracold temperatures

Zhang Ji-Cai, Zhu Zun-Lue, Sun Jin-Feng
PDF
导出引用
  • 本文分别用量子方法和半经典方法计算了超冷钾和铯原子之间弹性碰撞的s波散射长度,有效力程和p波散射长度等散射参数. 超冷温度下39K-133Cs原子间的弹性散射截面主要为s波贡献,随着碰撞能量的增加散射截面有丰富的形状共振出现, 计算发现单重态和三重态截面分别存在显著的g波和d波形状共振.另外,本文应用简并内态近似方法获得了41K-133Cs 超精细态相互作用时的s波散射长度.
    In this paper, we calculate the scattering parameters for collision between potassium and cesium atoms at ultracold temperatures, such as s-wave scattering length, effective range and p-wave scattering length, by the quantum method and semiclassical method, respectively. The singlet and the triplet elastic scattering cross sections between 39K and Cs atoms at ultracold temperatures are dominated by s-wave scattering, and shape resonance occurs with the increase of collision energy. There exist pronounced g-wave and d-wave shape resonances for the singlet and the triplet cross sections, respectively. In addition, s-wave scattering lengths are calculated by using the degenerate internet state approximation for selected hyperfine states of 41KCs.
    • 基金项目: 国家自然科学基金(批准号: 10874064),河南省教育厅自然科学基金(批准号: 2011A140017) 和河南师范大学青年基金(批准号: 2010qk03)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10874064 ), the Natural Science Foundation of Educational Bureau of Henan Province, China (Grant No. 2011A140017), and the Youth Foundation of Henan Normal University(Grant No. 2010qk03).
    [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature(London) 416 225

    [4]

    Esry B D, Greene C H, Burke J P, Bohn J L 1997 Phys. Rev. Lett. 78 3594

    [5]

    Wang H, Nikolov A N, Ensher J R, Gould P L, Eyler E E, Stwalley W C, Burke J P, Bohn J L, Greene C H, Tiesinga E, Williams C J, Julienne P S 2000 Phys. Rev. A 62 052704

    [6]

    De Sarlo L, Maioli P, Barontini G, Catani J, Minardi F, Inguscio M 2007 Phys. Rev. A 75 022715

    [7]

    Falke S, Knöckel H, Friebe J, Riedmann M, Tiemann E, Lisdat C 2008 Phys. Rev. A 78 012503

    [8]

    Leo P J, Williams C J, Julienne P S 2000 Phys. Rev. Lett. 85 2721

    [9]

    Sun J F, Du B G, Zhang J C, Li W, Zhu Z L 2009 Chin. Phys. B 18 1019

    [10]

    Roati G, Zaccanti M, D'Errico C, Catani J, Modugno M, Simoni A, Inguscio M, Modugno G 2007 Phys. Rev. Lett. 99 010403

    [11]

    DeMarco B, Jin D S 1999 Science 285 1703

    [12]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [13]

    Weber T, Herbig J, Mark M, Näerl H-C, Grimm R 2003 Science 299 232

    [14]

    Zhang J C, Jia G R, Sun J F, Liu Y F 2010 J. Low Temp.Phys. 159 484

    [15]

    Ferber R, Klincare I, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E, Pashov A 2009 Phys. Rev. A 80 062501

    [16]

    Côt? R, Dalgarno A, Wang H, Stwalley W C 1998 Phys. Rev. A 57 4118

    [17]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

    [18]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London, Ser. A 286 519

    [19]

    Simos T E 1997 Computers Chem. 21 125

    [20]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [21]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [22]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [23]

    Dickinson A S 2008 J. Phys. B 41 175302

    [24]

    Sun J F, Zhang J C, Wang J M 2006 Chin. Phys. 15 531

    [25]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [26]

    Sansonetti J E, Martin W C 2005 Handbook of Basic Atomic Spectroscopic Data (NIST, 2005)

    [27]

    van Kempen E G M, Kokkelmans S J J M F, Heinzen D J, Verhaar B J 2002 Phys.Rev. Lett. 88 093201

    [28]

    Martinez de Escobar Y N, Mickelson P G, Pellegrini P, Nagel S B, Traverso A, Yan M, Côt? R, Killian T C 2008 Phys. Rev. A 78 062708

    [29]

    Londoño B E, Mahecha J E, Luc-Koenig E, Crubellier A 2010 Phys. Rev. A 82 012510

    [30]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712

  • [1]

    Weiner J, Bagnato V S, Zilio S, Julienne P S 1999 Rev. Mod. Phys. 71 1

    [2]

    Chin C, Grimm R, Julienne P S, Tiesinga E 2010 Rev. Mod. Phys. 82 125

    [3]

    Burnett K, Julienne P S, Lett P D, Tiesinga E, Williams C J 2002 Nature(London) 416 225

    [4]

    Esry B D, Greene C H, Burke J P, Bohn J L 1997 Phys. Rev. Lett. 78 3594

    [5]

    Wang H, Nikolov A N, Ensher J R, Gould P L, Eyler E E, Stwalley W C, Burke J P, Bohn J L, Greene C H, Tiesinga E, Williams C J, Julienne P S 2000 Phys. Rev. A 62 052704

    [6]

    De Sarlo L, Maioli P, Barontini G, Catani J, Minardi F, Inguscio M 2007 Phys. Rev. A 75 022715

    [7]

    Falke S, Knöckel H, Friebe J, Riedmann M, Tiemann E, Lisdat C 2008 Phys. Rev. A 78 012503

    [8]

    Leo P J, Williams C J, Julienne P S 2000 Phys. Rev. Lett. 85 2721

    [9]

    Sun J F, Du B G, Zhang J C, Li W, Zhu Z L 2009 Chin. Phys. B 18 1019

    [10]

    Roati G, Zaccanti M, D'Errico C, Catani J, Modugno M, Simoni A, Inguscio M, Modugno G 2007 Phys. Rev. Lett. 99 010403

    [11]

    DeMarco B, Jin D S 1999 Science 285 1703

    [12]

    Modugno G, Ferrari G, Roati G, Brecha R J, Simoni A, Inguscio M 2001 Science 294 1320

    [13]

    Weber T, Herbig J, Mark M, Näerl H-C, Grimm R 2003 Science 299 232

    [14]

    Zhang J C, Jia G R, Sun J F, Liu Y F 2010 J. Low Temp.Phys. 159 484

    [15]

    Ferber R, Klincare I, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E, Pashov A 2009 Phys. Rev. A 80 062501

    [16]

    Côt? R, Dalgarno A, Wang H, Stwalley W C 1998 Phys. Rev. A 57 4118

    [17]

    Weiss S B, Bhattacharya M, Bigelow N P 2003 Phys. Rev. A 68 042708

    [18]

    Dalgarno A, Rudge M R H 1965 Proc. R. Soc. London, Ser. A 286 519

    [19]

    Simos T E 1997 Computers Chem. 21 125

    [20]

    Mott N F, Massey H S W 1965 The Theory of Atomic Collisons (Oxford: Clarendon)

    [21]

    Gribakin G F, Flambaum V V 1993 Phys. Rev. A 48 546

    [22]

    Flambaum V V, Gribakin G F, Harabati C 1999 Phys. Rev. A 59 1998

    [23]

    Dickinson A S 2008 J. Phys. B 41 175302

    [24]

    Sun J F, Zhang J C, Wang J M 2006 Chin. Phys. 15 531

    [25]

    Jamieson M J, Zygelman B 2001 Phys. Rev. A 64 032703

    [26]

    Sansonetti J E, Martin W C 2005 Handbook of Basic Atomic Spectroscopic Data (NIST, 2005)

    [27]

    van Kempen E G M, Kokkelmans S J J M F, Heinzen D J, Verhaar B J 2002 Phys.Rev. Lett. 88 093201

    [28]

    Martinez de Escobar Y N, Mickelson P G, Pellegrini P, Nagel S B, Traverso A, Yan M, Côt? R, Killian T C 2008 Phys. Rev. A 78 062708

    [29]

    Londoño B E, Mahecha J E, Luc-Koenig E, Crubellier A 2010 Phys. Rev. A 82 012510

    [30]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712

计量
  • 文章访问数:  3659
  • PDF下载量:  670
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-31
  • 修回日期:  2012-05-10
  • 刊出日期:  2012-05-05

超冷温度下钾和铯原子间弹性散射特性的精确计算

  • 1. 河南师范大学物理与信息工程学院, 新乡 453007;
  • 2. 洛阳师范学院物理与电子信息学院, 洛阳 471022
    基金项目: 

    国家自然科学基金(批准号: 10874064),河南省教育厅自然科学基金(批准号: 2011A140017) 和河南师范大学青年基金(批准号: 2010qk03)资助的课题.

摘要: 本文分别用量子方法和半经典方法计算了超冷钾和铯原子之间弹性碰撞的s波散射长度,有效力程和p波散射长度等散射参数. 超冷温度下39K-133Cs原子间的弹性散射截面主要为s波贡献,随着碰撞能量的增加散射截面有丰富的形状共振出现, 计算发现单重态和三重态截面分别存在显著的g波和d波形状共振.另外,本文应用简并内态近似方法获得了41K-133Cs 超精细态相互作用时的s波散射长度.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回