搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衬底图形化与链取向技术实现平面光波导

方月婷 易建鹏 陈锦山 汪洪杰 池浪 夏瑞东

引用本文:
Citation:

基于衬底图形化与链取向技术实现平面光波导

方月婷, 易建鹏, 陈锦山, 汪洪杰, 池浪, 夏瑞东

Design of planar waveguide based on patterning substrate and oriented polymer film

Fang Yue-Ting, Yi Jian-Peng, Chen Jin-Shan, Wang Hong-Jie, Chi Lang, Xia Rui-Dong
PDF
导出引用
  • 采用喷墨打印的方法对衬底进行图形化, 结合链取向技术, 实现聚合物混合体Poly(9, 9-dioctylfluorene-co-benzothiadiazole)(F8BT, 主体)和Red F(客体)在指定区域链取向. 利用链取向区域内外的折射率差异, 设计出了各种宽度的薄膜光波导, 使光信号在链取向区域传播. 同时, 这一共混体系中主体的荧光光谱与客体的吸收光谱区域重叠, 可以使有效的能量传递发生, 利用主体向客体的能量传递机理, 使链取向处理后的聚合物混合体实现了红光发射.
    Semiconducting conjugated polymersused for light emitting devices (LEDs), lasers and amplifiers have received considerable attention due to their low cost and easy fabrication through spin-coating and photochemical processing. A promising material for LED and laser applications is poly(9, 9-dioctylfluorene-co-benzothiadiazole) (F8BT). F8BT has a low stimulated emission threshold and exhibits a large net optical gain at 570 nm. It also shows liquid crystallinity and can be readily aligned into a monodomain by using an alignment layer, polyimide (PI). Oriented film of F8BT exhibits that its charge carrier mobility is increased by more than one order of magnitude compared with isotropic film. The refractive index of the material is also greatly affected by the orientation of the polymer chain. Furthermore, it has been reported that low threshold laser can be achieved by blending P3 HT or red-F solution into F8BT via energy transfer.Here we report a planar waveguide structure obtained via patterning chain oriented area on F8BT: red-F (9 : 1) blend polymer film. The blend solution is obtained by mixing the F8BT solution with red-F solution (with the same concentration, 20 mg/ml in toluene) with a ratio of 9 : 1. The designed waveguide patterns are obtained by inkjet-printing the PI solution onto the pre-cleaned quartz substrates. Thin films (150-200~nm thick) of F8BT: Red F are deposited onto PI by spin coating (2000 rpm). The chain alignment treatment is performed by the following procedure: the films are kept in N2 at 265 ℃ for 2 min, then they are cooled down to 235 ℃ at a rate of 1 ℃/min, finally they are cooled down to room temperature sharply. The PI contacted area on the film becomes anisotropic, while the area without PI keeps isotropic. The refractive index parallel (perpendicular) to the chain direction is significantly increased (reduced) in the PI contacted area compared with outside the PI area. Therefore, the waveguide confinement could be achieved without changing the thickness of the film. Experimental investigations, including AFM images, polarized microscopy images, polarized absorption, and PL spectra of the patterned samples, clearly show the difference between the aligned area and isotropic area.The large percentage of overlap between the emission spectrum of F8BT and the absorption spectrum of red-F solution leads to an efficient energy transfer from F8BT (host) to red-F solution (guest), resulting in a red emission at a wavelength between 600-670 nm from the blend. The polarized absorption and PL spectra of the aligned F8BT: red-F film demonstrate that the absorption intensity of the polarized light parallel to the aligned chain is 5.9 times that perpendicular to the aligned chain at a wavelength of 477 nm, and their ratio is 5.5 at a wavelength of 631 nm.Our demonstration suggests that patterning chain oriented area can be a promising approach to achieving planar waveguide devices by utilizing the refraction index contrast within and beyond the chain oriented region, and the substrate of polyimide (PI) could be patterned with various widths and shapes by the use of inkjet printing technology.
      通信作者: 夏瑞东, iamrdxia@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准: 61376023, 61136003)、国家重点基础研究发展计划(批准号: 2015CB932203)、南京邮电大学引进人才启动基金(批准号: NY212013, NY212034)和江苏高校优势学科建设工程 (PAPD)资助的课题.
      Corresponding author: Xia Rui-Dong, iamrdxia@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61376023, 61136003), the National Basic Research Program of China (Grant No. 2015CB932203), the Startup Fund for Talent Introduction of Nanjing University of Posts and Telecommunications, China (Grant Nos. NY212013, NY212034), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.
    [1]

    McGehee M D, Heeger A J 2000 Adv. Mater. 12 1655

    [2]

    Satria Zulkarnaen Bisri, Taishi Takenobu, Yoshihiro Iwasa 2014 J. Mater. Chem. C 2 2827

    [3]

    Forrest S R, Thompson M E 2007 Chem. Rev. 107 923

    [4]

    Zhang Q, Zeng W J, Xia R D 2015 Acta Phys. Sin. 64 094202 (in Chinese) [张琪, 曾文进, 夏瑞东 2015 物理学报 64 094202]

    [5]

    Xia R D, Heliotis G, Hou Y, Bradley D D C 2003 Org. Electron. 4 165

    [6]

    Tessler N, Pinner D J, Cleave V, Ho P K H, Friend R H, Yahioglu G, Barny P L, Gray J, de Souz M, Rumbles G 2000 Synthetic Met. 115 57

    [7]

    Baldo M A, Holmes R J, Forrest S R 2002 Phys. Rev. B 66 035321

    [8]

    Giebink N C, Forrest S R 2009 Phys. Rev. B 79 073302

    [9]

    Heliotis G, Xia R D, Whitehead K S, Turnbull G A, Samuel I D W, Bradley D D C 2003 Synthetic Met. 139 727

    [10]

    Xia R D, Campoy-Quiles M, Heliotis G, Stavrinou P, Whitehead K S, Bradley D D C 2005 Synthetic Met. 155 274

    [11]

    Xia R D, Stavrinou P N, Bradley D D C, Kim Y 2012 J. Appl. Phys. 111 123107

    [12]

    Tsiminis G, Wang Y, Kanibolotsky A L, Inigo A R, Skabara P J, Samuel I D W, Turnbull G A 2013 Adv. Mater. 25 2826

    [13]

    Xia R D, Cheung C, Ruseckas A, Amarasinghe D, Samuel I D W, Bradley D D C 2007 Adv. Mater. 19 4054

    [14]

    Yang B, Li Z Y, Xiao X, Nemkova Anastasia, Yu J Z, Yu Y D 2013 Acta Phys. Sin. 18 184214 (in Chinese) [杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德 2013 物理学报 18 184214]

    [15]

    Li W, Gao Z Q, Mi B X, Wei H 2009 Journal of Nanjing University of Posts and Telecommunications (Natural Science) 29 90 (in Chinese) [李巍, 高志强, 密保秀, 黄维 2009 南京邮电大学学报(自然科学版) 29 90]

    [16]

    Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101 (in Chinese) [李文萃, 刘永刚, 宣丽 2011 物理学报 60 046101]

    [17]

    Xia R D, Heliotis G, Stavrinou P N, Bradley D D C 2005 Appl. Phys. Lett. 87 031104

    [18]

    Heliotis G, Xia R D, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2004 J. Appl. Phys. 96 6959

    [19]

    Amarasinghe D, Ruseckas A, Vasdekis A E, Turnbull G A, Samuel I D W 2009 Adv. Mater. 21 107

    [20]

    Redecker M, Bradley D D C, Inbasekaran M, Woo E P 1999 Appl. Phys. Lett. 74 1400

  • [1]

    McGehee M D, Heeger A J 2000 Adv. Mater. 12 1655

    [2]

    Satria Zulkarnaen Bisri, Taishi Takenobu, Yoshihiro Iwasa 2014 J. Mater. Chem. C 2 2827

    [3]

    Forrest S R, Thompson M E 2007 Chem. Rev. 107 923

    [4]

    Zhang Q, Zeng W J, Xia R D 2015 Acta Phys. Sin. 64 094202 (in Chinese) [张琪, 曾文进, 夏瑞东 2015 物理学报 64 094202]

    [5]

    Xia R D, Heliotis G, Hou Y, Bradley D D C 2003 Org. Electron. 4 165

    [6]

    Tessler N, Pinner D J, Cleave V, Ho P K H, Friend R H, Yahioglu G, Barny P L, Gray J, de Souz M, Rumbles G 2000 Synthetic Met. 115 57

    [7]

    Baldo M A, Holmes R J, Forrest S R 2002 Phys. Rev. B 66 035321

    [8]

    Giebink N C, Forrest S R 2009 Phys. Rev. B 79 073302

    [9]

    Heliotis G, Xia R D, Whitehead K S, Turnbull G A, Samuel I D W, Bradley D D C 2003 Synthetic Met. 139 727

    [10]

    Xia R D, Campoy-Quiles M, Heliotis G, Stavrinou P, Whitehead K S, Bradley D D C 2005 Synthetic Met. 155 274

    [11]

    Xia R D, Stavrinou P N, Bradley D D C, Kim Y 2012 J. Appl. Phys. 111 123107

    [12]

    Tsiminis G, Wang Y, Kanibolotsky A L, Inigo A R, Skabara P J, Samuel I D W, Turnbull G A 2013 Adv. Mater. 25 2826

    [13]

    Xia R D, Cheung C, Ruseckas A, Amarasinghe D, Samuel I D W, Bradley D D C 2007 Adv. Mater. 19 4054

    [14]

    Yang B, Li Z Y, Xiao X, Nemkova Anastasia, Yu J Z, Yu Y D 2013 Acta Phys. Sin. 18 184214 (in Chinese) [杨彪, 李智勇, 肖希, Nemkova Anastasia, 余金中, 俞育德 2013 物理学报 18 184214]

    [15]

    Li W, Gao Z Q, Mi B X, Wei H 2009 Journal of Nanjing University of Posts and Telecommunications (Natural Science) 29 90 (in Chinese) [李巍, 高志强, 密保秀, 黄维 2009 南京邮电大学学报(自然科学版) 29 90]

    [16]

    Li W C, Liu Y G, Xuan L 2011 Acta Phys. Sin. 60 046101 (in Chinese) [李文萃, 刘永刚, 宣丽 2011 物理学报 60 046101]

    [17]

    Xia R D, Heliotis G, Stavrinou P N, Bradley D D C 2005 Appl. Phys. Lett. 87 031104

    [18]

    Heliotis G, Xia R D, Bradley D D C, Turnbull G A, Samuel I D W, Andrew P, Barnes W L 2004 J. Appl. Phys. 96 6959

    [19]

    Amarasinghe D, Ruseckas A, Vasdekis A E, Turnbull G A, Samuel I D W 2009 Adv. Mater. 21 107

    [20]

    Redecker M, Bradley D D C, Inbasekaran M, Woo E P 1999 Appl. Phys. Lett. 74 1400

  • [1] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应. 物理学报, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [2] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性. 物理学报, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [3] 潘国兴, 李田, 汤国强, 张发培. 高度取向的半导体聚合物薄膜的溶液浸涂法生长及其电荷传输特性研究. 物理学报, 2017, 66(15): 156801. doi: 10.7498/aps.66.156801
    [4] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [5] 李冬梅, 袁晓娟, 周加强. 共轭聚合物中链内无序效应对极化子输运的影响. 物理学报, 2013, 62(16): 167202. doi: 10.7498/aps.62.167202
    [6] 张颖, 何智兵, 李萍, 闫建成. 硅掺杂辉光放电聚合物薄膜的热稳定性研究. 物理学报, 2011, 60(12): 126501. doi: 10.7498/aps.60.126501
    [7] 谢茹胜, 赵有源. 新型掺偶氮苯聚合物的取向增强及全息存储. 物理学报, 2011, 60(5): 054202. doi: 10.7498/aps.60.054202
    [8] 马晨, 张保民, 张立, 马玉峰, 赵维富. 碱性品红光致聚合物薄膜的光致光衍射. 物理学报, 2010, 59(9): 6266-6272. doi: 10.7498/aps.59.6266
    [9] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [10] 邹建华, 兰林锋, 徐瑞霞, 杨伟, 彭俊彪. 有机薄膜晶体管驱动聚合物发光二极管研究. 物理学报, 2010, 59(2): 1275-1281. doi: 10.7498/aps.59.1275
    [11] 刘玉荣, 王智欣, 虞佳乐, 徐海红. 高迁移率聚合物薄膜晶体管. 物理学报, 2009, 58(12): 8566-8570. doi: 10.7498/aps.58.8566
    [12] 田勇, 潘煦, 王长顺, 张小强, 曾艺. 偶氮液晶聚合物薄膜的二维偏振全息记录. 物理学报, 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [13] 黎爱珍, 陈志峰, 王惠, 张燕伟, 张伟, 余汉城, 黄锦汪, 计亮年. F?rster双分子猝灭作用对卟啉侧链聚合物荧光衰变的影响. 物理学报, 2009, 58(2): 1321-1325. doi: 10.7498/aps.58.1321
    [14] 陈志峰, 王 惠, 张 伟, 沈 涵, 余汉城, 黄锦汪, 赖天树, 计亮年. 激子旋转弛豫对低掺杂卟啉侧链聚合物荧光衰变过程的影响. 物理学报, 2008, 57(8): 5296-5301. doi: 10.7498/aps.57.5296
    [15] 刘 军, 侯延冰, 孙 鑫, 师全民, 李 妍, 靳 辉, 鲁 晶. 电场诱导聚合物分子取向对单线态和三线态激子形成截面的影响. 物理学报, 2007, 56(5): 2845-2851. doi: 10.7498/aps.56.2845
    [16] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [17] 陈 波, 夏庆中, V. T. Lebedev. 富勒烯-PVP聚合物链团结构的中子小角散射实验研究. 物理学报, 2005, 54(6): 2821-2825. doi: 10.7498/aps.54.2821
    [18] 高 琨, 付吉永, 刘德胜, 解士杰. 链间耦合对聚合物中双激子态反向极化的影响. 物理学报, 2005, 54(2): 665-668. doi: 10.7498/aps.54.665
    [19] 王义平, 陈建平, 李新碗, 周俊鹤, 沈 浩, 施长海, 张晓红, 洪建勋, 叶爱伦. 快速可调谐电光聚合物波导光栅. 物理学报, 2005, 54(10): 4782-4788. doi: 10.7498/aps.54.4782
    [20] 袁保红, 姜永远, 孙秀冬, 裴延波, 王健, 周忠祥. 光折变聚合物PVK∶5CB∶C60中生色团动态取向的研究. 物理学报, 2002, 51(4): 796-804. doi: 10.7498/aps.51.796
计量
  • 文章访问数:  5335
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-11
  • 修回日期:  2015-11-28
  • 刊出日期:  2016-03-05

/

返回文章
返回