-
采用高温固相法在1300℃的温度获得了一种新型电子俘获型光存储材料 Sr2SnO4:Sb3+. 结果表明: 208 nm (Sb3+ 的1S01P1)和265 nm (1S03P1)的紫外光是Sr2SnO4:Sb3+ 的最有效信息写入光源; 其发射是覆盖400---700 nm的宽带(3P0,1XXS0), 肉眼可看到淡黄色白光, 色坐标为(0.341, 0.395). 热释光谱研究结果表明: Sr2SnO4:Sb3+ 有分别位于39℃, 124℃, 193℃和310℃的四个热释峰. 其中, 39℃的热释峰强度很低, 因而Sr2SnO4:Sb3+ 只具有不到140 s的微弱余辉. 而310℃的高温热释峰在空置1天后, 仍能保持约45.6%的初始强度, 并对980 nm的红外光有很好的红外上转换光激励响应. 因此, Sr2SnO4:Sb3+ 是一种具有一定的信息存储应用潜力的新型光存储发光材料.
-
关键词:
- Sr2SnO4:Sb3+ /
- 红外上转换光激励 /
- 光存储
A novel electron trapped material Sr2SnO4:Sb3+ for optical storage is successfully obtained by conventional solid state method at 1300℃ It indicates that the 1S0 1P1 (208 nm) and 1S0 3P1 (265 nm) transitions of Sb3+ are the most efficient writing light source. Its emission covers 400700 nm and can be attributed to 3P0,1 1S0 transition of Sb3+. We can observe yellowish white light and its color coordination is (0.341, 0.395). The thermoluminescence of Sr2SnO4:Sb3+ contains four peaks at about 39 ℃, 124 ℃, 193 ℃ and 310 ℃, respectively. The intensity of peak at 39 ℃ is low and thus it has a weak afterglow which can last only 140 s. However, even after putting it in dark for 1 day, the peak at 310 ℃ can still keep 45.6% of its original intensity and can be efficiently stimulated by 980 nm infrared laser. As a conclusion, the Sr2SnO4:Sb3+ is a promising electron trapping material for application in optical storage.-
Keywords:
- Sr2SnO4:Sb3+ /
- photostimulated luminescence /
- optical storage
[1] Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375
[2] Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502
[3] Yamashita S A, Ogawa N 1989 Phys. Status. Solidi B 118 89
[4] Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670
[5] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[6] Zhang J C, Yu M H, Qin Q S, Xu X H, Wang Y H 2010 Journal of Applied Physics 108 123518
[7] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[8] Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177
[9] Wen F S, Chen J S, Moon J H, Kim J H, Niu J H, Li W L 2004 J. Solid. State. Chem. 177 3114
[10] Van Steensel L I, Blasse G 1996 J. Alloy. Comp. 232 60
-
[1] Cho Y, Kim D S, Choe B, Lim H, Kim D 1997 Phys. Rev. B 56 R4375
[2] Zhang Y, Wang B, Liu X, Xiao M 2010 J. Appl. Phys. 107 103502
[3] Yamashita S A, Ogawa N 1989 Phys. Status. Solidi B 118 89
[4] Matsuzawa T, Aoki Y, Takeuchi N, Maruyama Y 1996 J. Electrochem. Soc. 143 2670
[5] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[6] Zhang J C, Yu M H, Qin Q S, Xu X H, Wang Y H 2010 Journal of Applied Physics 108 123518
[7] Lei B, Li B, Zhang H, Li W 2007 Opt. Mater. 29 1491
[8] Wang J X, Xie S S, Gao Y, Yan X Q, Liu D F, Yuan H J, Zhou Z P, Song L, Liu L F, Zhou W Y, Wang G 2004 J. Cryst. Growth. 267 177
[9] Wen F S, Chen J S, Moon J H, Kim J H, Niu J H, Li W L 2004 J. Solid. State. Chem. 177 3114
[10] Van Steensel L I, Blasse G 1996 J. Alloy. Comp. 232 60
计量
- 文章访问数: 7408
- PDF下载量: 1023
- 被引次数: 0