搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热光伏器件中的光谱调控

熊家骋 黄哲群 张恒 王启祥 崔可航

引用本文:
Citation:

热光伏器件中的光谱调控

熊家骋, 黄哲群, 张恒, 王启祥, 崔可航

Spectral Regulation in Thermophotovoltaic Devices

Xiong Jia-Cheng, Huang Zhe-Qun, Zhang Heng, Wang Qi-Xiang, Cui Ke-Hang
PDF
导出引用
  • 热光伏器件是一种利用光伏效应将热源的热辐射转化为电能的器件。高效热光伏器件在电网规模的热能存储、全光谱太阳能转换、分布式联合发电、废热回收等方面有着广阔的应用前景。然而,大多数热辐射处于低能量波长范围,无法有效激发光伏电池半导体的电子跃迁从而产生电能。因此,对热辐射光谱发射的选择性调控是实现高效热光伏器件的关键。近年来,伴随着纳米光子学、材料科学与人工智能赋能科学的发展,热光伏器件中的光谱调控也取得了极大进展。本文首先回顾了热光伏器件的发展历史,继而围绕热光伏器件中热端和冷端的光谱调控,详细讨论了超结构选择性发射器、本征选择性发射器、光滤波器以及背表面反射器的热辐射光谱调控物理机制与调控手段,并梳理和总结了近场热光伏的相关研究。最后对热光伏器件的未来发展进行了展望。
    Thermophotovoltaic (TPV) device converts thermal radiation to electricity output through photovoltaic effect. High-efficiency TPV devices have broad-range applications in grid-scale thermal storage, full-spectrum solar utilization, distributed thermal-electricity cogeneration and waste heat scavenging. The key to high-efficiency TPV devices lies in spectral regulation to achieve band-matching between thermal radiation of the emitters and electron transition of the photovoltaic cells. Recent advancement in nanophotonics, materials science as well as artificial intelligence for science have enabled milestone progresses in spectral regulation and record power conversion efficiency as high as 40% of TPV devices. Here we systematically review spectral regulation in TPV devices at the emitter end as well as the photovoltaic cell end. At the emitter end, spectral regulation is realized through thermal metamaterials and rare-earth intrinsic emitters to selectively enhance the in-band radiation and suppress the sub-bandgap radiation. At the photovoltaic cell end, spectral regulation mainly focuses on recycling the sub-bandgap thermal radiation through optical filter and back surface reflector applied at the front and back of the photovoltaic cells, respectively. We underline the light-matter interaction mechanisms and materials systems of different spectral regulation strategies. We also discuss the spectral regulation strategies in near-field TPV devices. Finally, we envision potential development pathway and prospects of spectral regulation to achieve scalable deployment of TPV devices in future.
  • [1]

    Datas A, Lopez-Ceballos A, Lopez E, Ramos A, del Canizo C 2022 Joule 6 418

    [2]

    Chan W R, Bermel P, Pilawa-Podgurski R C N, Marton C H, Jensen K F, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Proc. Natl. Acad. Sci. U.S.A. 110 5309

    [3]

    Chan W R, Stelmakh V, Ghebrebrhan M, Soljacic M, Joannopoulos J D, Celanovic I 2017 Energy Environ. Sci. 10 1367

    [4]

    Coutts T J 1999 Renew. Sust. Energ. Rev. 3 77

    [5]

    Nelson R E 2003 Semicond. Sci. Technol. 18 141

    [6]

    Wedlock B D 1963 Proc. IEEE 51 694

    [7]

    Guazzoni G, Kittl E, Shapiro S 1969 IEEE Trans. Electron Devices 16 256

    [8]

    Swanson R M 1978 1978 International Electron Devices Meeting Washington, DC, USA, December 4-6, 1978 70

    [9]

    Swanson R M 1980 International Electron Devices Meeting Washington, DC, USA, December 8-10, 1980 186

    [10]

    Woolf L D, Bass J C, Elsner N B 1986 Proceedings of the 32nd International Power Sources Symposium Cherry Hill, NJ, USA, June 9-12, 1986 101

    [11]

    Lowe R A, Chubb D L, Farmer S C, Good B S 1994 Appl. Phys. Lett. 64 3551

    [12]

    John S 1987 Phys. Rev. Lett. 58 2486

    [13]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [14]

    Narayanaswamy A, Chen G 2004 Phys. Rev. B 70 125101

    [15]

    Pralle M U, Moelders N, McNeal M P, Puscasu I, Greenwald A C, Daly J T, Johnson E A, George T, Choi D S, El-Kady I, Biswas R 2002 Appl. Phys. Lett. 81 4685

    [16]

    Lin S Y, Moreno J, Fleming J G 2003 Appl. Phys. Lett. 83 380

    [17]

    LaPotin A, Schulte K L, Steiner M A, Buznitsky K, Kelsall C C, Friedman D J, Tervo E J, France R M, Young M R, Rohskopf A, Verma S, Wang E N, Henry A 2022 Nature 604 287

    [18]

    Wernsman B, Siergiej R R, Link S D, Mahorter R G, Palmisiano M N, Wehrer R J, Schultz R W, Schmuck G P, Messham R L, Murray S, Murray C S, Newman F, Taylor D, DePoy D M, Rahmlow T 2004 IEEE Trans. Electron Devices 51 512

    [19]

    Catrysse P B, Fan S 2010 Nano Lett. 10 2944

    [20]

    Wang X, Chan W R, Stelmakh V, Soljacic M, Joannopoulos J D, Celanovic I, Fisher P H 2015 J. Phys.: Conf. Ser. 660 012034

    [21]

    Rinnerbauer V, Lenert A, Bierman D M, Yeng Y X, Chan W R, Geil R D, Senkevich J J, Joannopoulos J D, Wang E N, Soljacic M, Celanovic I 2014 Adv. Energy Mater. 4 1400334

    [22]

    Fleming J G, Lin S Y, El-Kady I, Biswas R, Ho K M 2002 Nature 417 52

    [23]

    Fleming J G 2005 Appl. Phys. Lett. 86 249902

    [24]

    Trupke T, Würfel P, Green M A 2004 Appl. Phys. Lett. 84 1997

    [25]

    Arpin K A, Losego M D, Braun P V 2011 Chem. Mater. 23 4783

    [26]

    Arpin K A, Losego M D, Cloud A N, Ning H, Mallek J, Sergeant N P, Zhu L, Yu Z, Kalanyan B, Parsons G N, Girolami G S, Abelson J R, Fan S, Braun P V 2013 Nat. Commun. 4 2630

    [27]

    Ghebrebrhan M, Bermel P, Yeng Y X, Celanovic I, Soljacic M, Joannopoulos J D 2011 Phys. Rev. A 83 033810

    [28]

    Jovanovic N, Celanovic I, Kassakian J 2007 7th World Conference on Thermophotovoltaic Generation of Electricity Madrid, Spain, Sep 25-27, 2006 47

    [29]

    Rinnerbauer V, Yeng Y X, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I 2013 Opt. Express 21 11482

    [30]

    Silveirinha M, Engheta N 2006 Phys. Rev. Lett. 97 157403

    [31]

    Kinsey N, DeVault C, Boltasseva A, Shalaev V M 2019 Nature Reviews Materials 4 742

    [32]

    Vassant S, Hugonin J-P, Marquier F, Greffet J-J 2012 Opt. Express 20 23971

    [33]

    Molesky S, Dewalt C J, Jacob Z 2013 Opt. Express 21 96

    [34]

    Dyachenko P N, Molesky S, Petrov A Y, Stoermer M, Krekeler T, Lang S, Ritter M, Jacob Z, Eich M 2016 Nat. Commun. 7 11809

    [35]

    Kar C, Jena S, Udupa D V, Rao K D 2023 Opt. Laser Technol. 159 108928

    [36]

    Jeon N, Hernandez J J, Rosenmann D, Gray S K, Martinson A B F, Foley J J 2018 Adv. Energy Mater. 8 1801035

    [37]

    Hu R, Song J, Liu Y, Xi W, Zhao Y, Yu X, Cheng Q, Tao G, Luo X 2020 Nano Energy 72 104687

    [38]

    Wang Q, Huang Z, Li J, Huang G-Y, Wang D, Zhang H, Guo J, Ding M, Chen J, Zhang Z, Rui Z, Shang W, Xu J-Y, Zhang J, Shiomi J, Fu T, Deng T, Johnson S G, Xu H, Cui K 2023 Nano Lett. 4 1144

    [39]

    Guler U, Boltasseva A, Shalaev V M 2014 Science 344 263

    [40]

    Lee H-J, Smyth K, Bathurst S, Chou J, Ghebrebrhan M, Joannopoulos J, Saka N, Kim S-G 2013 Appl. Phys. Lett. 102 241904

    [41]

    Sai H, Kanamori Y, Yugami H 2003 Appl. Phys. Lett. 82 1685

    [42]

    Peykov D, Yeng Y X, Celanovic I, Joannopoulos J D, Schuh C A 2015 Opt. Express 23 9979

    [43]

    Rudisill S G, Wang Z, Stein A 2012 Langmuir 28 7310

    [44]

    Chirumamilla M, Krishnamurthy G V, Rout S S, Ritter M, Stoermer M, Petrov A Y, Eich M 2020 Sci. Rep. 10 3605

    [45]

    Nagpal P, Josephson D P, Denny N R, DeWilde J, Norris D J, Stein A 2011 J. Mater. Chem. 21 10836

    [46]

    Stelmakh V, Peykov D, Chan W R, Senkevich J J, Joannopoulos J D, Soljacic M, Celanovic I, Castillo R, Coulter K, Wei R 2015 J. Vac. Sci. Technol. A 33 061204

    [47]

    Chirumamilla M, Krishnamurthy G V, Knopp K, Krekeler T, Graf M, Jalas D, Ritter M, Stoermer M, Petrov A Y, Eich M 2019 Sci. Rep. 9 7241

    [48]

    Cui K, Lemaire P, Zhao H, Savas T, Parsons G, Hart A J 2018 Adv. Energy Mater. 8 1801471

    [49]

    McSherry S, Webb M, Kaufman J, Deng Z, Davoodabadi A, Ma T, Kioupakis E, Esfarjani K, Heron J T, Lenert A 2022 Nat. Nanotechnol. 17 1104

    [50]

    Dias M R S, Gong T, Duncan M A, Ness S C, McCormack S J, Leite M S, Munday J N 2023 Joule 7 2209

    [51]

    Torsello G, Lomascolo M, Licciulli A, Diso D, Tundo S, Mazzer M 2004 Nat. Mater. 3 632

    [52]

    Bitnar B, Durisch W, Mayor J C, Sigg H, Tschudi H R 2002 Sol. Energy Mater Sol. Cells 73 221

    [53]

    Bitnar S, Durisch W, Palfinger G, von Roth F, Vogt U, Brönstrup A, Seiler D 2004 Semiconductors 38 941

    [54]

    Nakagawa N, Ohtsubo H, Waku Y, Yugami H 2005 J. Eur. Ceram. Soc. 25 1285

    [55]

    Yugami H, Sai H, Nakamura K, Nakagawa N, Ohtsubo H 2000 28th IEEE Photovoltaic Specialists Conference Anchorage, AK, USA, September 15-22, 2000 1214

    [56]

    Shimizu M, Kohiyama A, Yugami H 2015 J. Photonics Energy 5 053099

    [57]

    Ferguson L G, Dogan F 2001 Mater Sci Eng B Solid State Mater Adv Technol 83 35

    [58]

    van de Groep J, Spinelli P, Polman A 2012 Nano Lett. 12 3138

    [59]

    Shemelya C, Demeo D F, Vandervelde T E 2014 Appl. Phys. Lett. 104 021115

    [60]

    Zhang S, Huang B, Bian Y, Han C, Tian D, Chen X, Qiu J, Zhu A, Yang A, Shao J 2023 Opt. Express 31 9186

    [61]

    Rahmlow T D, DePoy DM, Fourspring P M, Ehsani H, Lazo-Waseml J E, Gratrix E J 2007 AIP Conf. Proc. 890 59

    [62]

    Fourspring P M, DePoy D M, Rahmlow T D, Lazo-Wasem J E, Gratrix E J 2006 Appl. Opt. 45 1356

    [63]

    Bierman D M, Lenert A, Chan W R, Bhatia B, Celanovic I, Soljacic M, Wang E N 2016 Nat. Energy 1 16068

    [64]

    Varner J F, Wert D, Matari A, Nofal R, Foley J J 2020 Phys. Rev. Res. 2 013018

    [65]

    Jiang J, Fan J A 2021 Nanophotonics 10 361

    [66]

    Wang H, Zheng Z, Ji C, Jay Guo L 2021 Machine Learning-Science And Technology 2 025013

    [67]

    Omair Z, Scranton G, Pazos-Outon L M, Xiao T P, Steiner M A, Ganapati V, Peterson P F, Holzrichter J, Atwater H, Yablonovitch E 2019 Proc. Natl. Acad. Sci. U.S.A. 116 15356

    [68]

    Burger T, Fan D, Lee K, Forrest S R, Lenert A 2018 ACS Photonics 5 2748

    [69]

    Fan D, Burger T, McSherry S, Lee B, Lenert A, Forrest S R 2020 Nature 586 237

    [70]

    Lee B, Lentz R, Burger T, Roy-Layinde B, Lim J, Zhu R M, Fan D, Lenert A, Forrest S R 2022 ACS Energy Lett. 7 2388

    [71]

    Volokitin A I, Persson B N J 2007 Rev. Mod. Phys. 79 1291

    [72]

    DiMatteo R S, Greiff P, Finberg S L, Young-Waithe K A, Choy H K H, Masaki M M, Fonstad C G 2001 Appl. Phys. Lett. 79 1894

    [73]

    Pan J L, Choy H K H, Fonstad C G 2000 IEEE Trans. Electron Devices 47 241

    [74]

    Narayanaswamy A, Chen G 2003 Appl. Phys. Lett. 82 3544

    [75]

    Zhao B, Chen K, Buddhiraju S, Bhatt G, Lipson M, Fan S 2017 Nano Energy 41 344

    [76]

    Fiorino A, Zhu L, Thompson D, Mittapally R, Reddy P, Meyhofer E 2018 Nat. Nanotechnol. 13 806

    [77]

    Inoue T, Koyama T, Kang D D, Ikeda K, Asano T, Noda S 2019 Nano Lett. 19 3948

    [78]

    Lucchesi C, Cakiroglu D, Perez J-P, Taliercio T, Tournie E, Chapuis P-O, Vaillon R 2021 Nano Lett. 21 4524

    [79]

    Bright T J, Wang L P, Zhang Z M 2014 J. Heat Transfer 136 062701

    [80]

    Tong J K, Hsu W-C, Huang Y, Boriskina S V, Chen G 2015 Sci. Rep. 5 10661

    [81]

    Mittapally R, Lee B, Zhu L, Reihani A, Lim J W, Fan D, Forrest S R, Reddy P, Meyhofer E 2021 Nat. Commun. 12 4364

    [82]

    Inoue T, Ikeda K, Song B, Suzuki T, Ishino K, Asano T, Noda S 2021 ACS Photonics 8 2466

  • [1] 赖镇鑫, 张也, 仲帆, 王强, 肖彦玲, 祝世宁, 刘辉. 基于合成维度拓扑外尔点的波长选择热辐射超构表面. 物理学报, doi: 10.7498/aps.73.20240512
    [2] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射. 物理学报, doi: 10.7498/aps.72.20222385
    [3] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控. 物理学报, doi: 10.7498/aps.71.20211438
    [4] 相阳, 郑军, 李春雷, 王小明, 袁瑞旸. 圆偏振光场调控的锡烯纳米带热自旋输运. 物理学报, doi: 10.7498/aps.70.20210197
    [5] 孟勇军, 李洪, 唐建伟, 陈学文. 基于等离激元纳腔的单颗粒稀土掺杂纳米晶上转换发光光谱调控. 物理学报, doi: 10.7498/aps.70.20211438
    [6] 杜玮, 尹格, 马云贵. 基于CaF2/W多层膜人工双曲介质的近场热光伏器件. 物理学报, doi: 10.7498/aps.69.20200892
    [7] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, doi: 10.7498/aps.69.20191835
    [8] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, doi: 10.7498/aps.68.20182294
    [9] 于海童, 刘东, 杨震, 段远源. 用于热光伏系统的近场辐射光谱控制表面结构. 物理学报, doi: 10.7498/aps.67.20171531
    [10] 张翔宇, 王丹, 石焕文, 王晋国, 侯兆阳, 张力东, 高当丽. 基质材料对Yb3+浓度调控的上转换荧光红绿比的影响. 物理学报, doi: 10.7498/aps.67.20171894
    [11] 张翔宇, 王晋国, 徐春龙, 潘渊, 侯兆阳, 丁健, 高当丽. NaYF4:Tm3+纳米棒中激光脉宽调控的荧光选择输出特性. 物理学报, doi: 10.7498/aps.65.204205
    [12] 吴限量, 张德贤, 蔡宏琨, 周严, 倪牮, 张建军. 基于GaSb/CdS薄膜热光伏电池的器件设计. 物理学报, doi: 10.7498/aps.64.096102
    [13] 李树, 邓力, 田东风, 李刚. 基于能量密度分布的辐射源粒子空间抽样方法研究. 物理学报, doi: 10.7498/aps.63.239501
    [14] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, doi: 10.7498/aps.62.117304
    [15] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解. 物理学报, doi: 10.7498/aps.62.249501
    [16] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, doi: 10.7498/aps.61.094217
    [17] 孙健, 刘伟强. 内嵌定向高导热层疏导式结构热防护机理分析. 物理学报, doi: 10.7498/aps.61.124401
    [18] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, doi: 10.7498/aps.57.5761
    [19] 史旺林, 刘兴业, 刘振兴. Vaidya-Bonner-de Sitter黑洞对狄拉克粒子的热辐射. 物理学报, doi: 10.7498/aps.53.2396
    [20] 张才根, 张幼文. 环境辐射对目标热辐射特性测试的影响. 物理学报, doi: 10.7498/aps.30.953
计量
  • 文章访问数:  165
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 上网日期:  2024-06-03

/

返回文章
返回