-
针对飞行器高超声速飞行时严重的气动加热环境, 提出内嵌定向高导热层的疏导式热防护系统. 运用数值方法分析了特定条件下内嵌定向高导热层的疏导式系统的防热效果, 外壁面最高温度下降了9.1%, 内壁面最高温度下降了31.5%, 高温区和低温区都被封闭在外层区域, 内层温度更加均匀, 实现了热流由高温区向低温区的转移, 削弱了高温区的热载荷, 强化了整体结构的热防护能力. 研究表明, 随着气动热流密度比与辐射散热面积比的增大, 疏导结构的冷却效果增强. 本文还对疏导防热系统的结构参数和材料参数对冷却效果的影响进行了分析, 为结构的设计和材料的选取提供一定的依据.The structure of embedded high thermal conductivity layer leading thermal protection is considered as thermal protection system to prevent hypersonic vehicle from the serious aerodynamic heating. By numerical method, we analyze the cooling effect of the leading thermal protection system under given conditions. The maximum outer surface temperature and the inner surface temperature are reduced by 9.1% and by 31.5% respectively. Both high temperature region and low temperature region are blocked in the external layer and the inner temperature distributions are more uniform. The transfer of heat from high temperature region to low one is achieved, the thermal load of the high temperature area is weakened, and the ability of leading thermal protection system is strengthened. The research shows that the cooling effect of leading system increases with the increases of aerodynamic flux ratio and the area ratio of radiative surfaces. The influences of structure parameters and materials properties on thermal protection are discussed, which provides some references for the design of the structure and the selection of materials.
-
Keywords:
- high directional thermal conductivity layer /
- leading thermal protection /
- aerodynamic heating /
- heat radiation
[1] David E 2008 AIAA-2008-2068
[2] Wojcik C C, Clark L T 1991 AIAA-1991-1400-520
[3] David E 1998 NASA CR-1998-208962
[4] David E 1998 NASA CR-1998-207642
[5] Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]
[6] Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11 72 (in Chinese) [姜贵庆, 艾邦成, 俞继军, 陈连忠 2008第十一届全国热管会议 威海9月7---11日72]
[7] Li T Q, Hu Z J 2007 Aeros. Mater. Techn. 1 16 (in Chinese) [李同起, 胡子君 2007 航空材料工艺 1 16]
[8] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 物理学报 55 3552]
[9] Wang Z L, Liang J G, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]
[10] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]
[11] Sun J, Liu W Q 2011 Acta Aeron. Astron. Sin. 32 1622 (in Chinese) [孙健, 刘伟强 2011 航空学报 32 1622]
[12] Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元, 曹炳阳 2008 物理学报 57 4273]
-
[1] David E 2008 AIAA-2008-2068
[2] Wojcik C C, Clark L T 1991 AIAA-1991-1400-520
[3] David E 1998 NASA CR-1998-208962
[4] David E 1998 NASA CR-1998-207642
[5] Chen L Z, Ou D B, Liu D Y 2009 Frontier Sci. 2 41 (in Chinese) [陈连忠, 欧东斌, 刘德英 2009 前沿科学 2 41]
[6] Jiang G Q, Ai B C, Yu J J, Chen L Z 2008 11th Countrywide Heat Pipe Conference Weihai September 7-11 72 (in Chinese) [姜贵庆, 艾邦成, 俞继军, 陈连忠 2008第十一届全国热管会议 威海9月7---11日72]
[7] Li T Q, Hu Z J 2007 Aeros. Mater. Techn. 1 16 (in Chinese) [李同起, 胡子君 2007 航空材料工艺 1 16]
[8] Bao W X, Zhu C C 2006 Acta Phys. Sin. 55 3552 (in Chinese) [保文星, 朱长纯 2006 物理学报 55 3552]
[9] Wang Z L, Liang J G, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]
[10] Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]
[11] Sun J, Liu W Q 2011 Acta Aeron. Astron. Sin. 32 1622 (in Chinese) [孙健, 刘伟强 2011 航空学报 32 1622]
[12] Guo Z Y, Cao B Y 2008 Acta Phys. Sin. 57 4273 (in Chinese) [过增元, 曹炳阳 2008 物理学报 57 4273]
计量
- 文章访问数: 8045
- PDF下载量: 657
- 被引次数: 0