-
开展了强飞秒激光场诱导的二氧化碳二聚体离子
${{\rm{(CO}}_2)}_{2}^{4+}$ 的三体库仑爆炸过程的实验研究. 利用冷靶反冲离子动量成像谱仪测量了关联的碎片离子的三维动量矢量和动能. 结果表明,${\rm{(CO_2)}}_{2}^{4+}$ 离子通过序列解离通道和非序列解离通道分解为${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$ 离子. 在序列解离过程中, 弱范德瓦耳斯键先断裂, 然后是强的共价键C=O断裂; 而在非序列解离过程中, 3个碎片离子在一次动力学事件内几乎同时产生. 通过对比两个解离通道的事件比率, 表明序列的解离通道在${\rm{(CO_2)}}_{2}^{4+}$ 离子的三体库仑爆炸中占主导作用. 发现这种同时包含范德瓦耳斯键和共价键的二聚体或团簇在多体库仑爆炸过程中相比单体和仅有范德瓦耳斯键的团簇具有特殊的动力学性质, 两种化学键在强场动力学过程中扮演不同的角色.We study experimentally the three-body Coulomb explosion dynamics of carbon dioxide dimer${\rm{(CO_2)}}_{2}^{4+}$ ions produced by intense femtosecond laser field. The three-dimensional momentum vectors as well as kinetic energy are measured for the correlated fragmental ions in a cold-target recoil-ion momentum spectrometer (COLTRIMS). Carbon dioxide dimer is produced during the supersonic expansion of${\rm{(CO_2)_2}}$ gas from a 30 μm nozzle with 10 bar backing pressure. The linearly polarized laser pulses with a pulse duration (full width at half maximum of the peak intensity) of 25 fs, a central wavelength of 790 nm, a repetition rate of 10 kHz, and peak laser intensities on the order of${\rm{8 \times10^{14}}}\;{\rm{W/cm^2}}$ are produced by a femtosecond Ti:sapphire multipass amplification system. We concentrate on the three-particle breakup channel${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+{\rm{CO^+}}+ {\rm{O^+}}$ . The two-particle breakup channels,${\rm{(CO_2)_2^{4+}}} \rightarrow {\rm{CO}}_{2}^{2+}+ {\rm{CO_{2}}^{2+}}$ and${\rm{CO_2^{2+}}\rightarrow CO^++O^+}$ , are selected as well for reference. The fragmental ions are guided by a homogenous electric field of 60 V/cm toward microchannel plates position-sensitive detector. The time of flight (TOF) and position of the fragmental ions are recorded to reconstruct their three-dimensional momenta. By designing some constraints to filter the experimental data, we select the data from different dissociative channels. The results demonstrate that the three-body Coulomb explosion of${\rm{(CO_2)}}_{2}^{4+}$ ions break into${\rm{CO}}_{2}^{2+}+{\rm{CO}}^++{\rm{O}}^+$ through two mechanisms: sequential fragmentation and non-sequential fragmentation, in which the sequential fragmentation channel is dominant. These three fragmental ions are produced almost instantaneously in a single dynamic process for the non-sequential fragmentation channel but stepwise for the sequential fragmentation. In the first step, the weak van der Waals bond breaks,${\rm{(CO_2)}}_{2}^{4+}$ dissociates into two${\rm{CO}}_{2}^{2+}$ ions; and then one of the C=O covalent bonds of${\rm{CO}}_{2}^{2+}$ breaks up, the${\rm{CO}}_{2}^{2+}$ ion breaks into${\rm{CO^+}}$ and${\rm{O^+}}$ . The time interval between the two steps is longer than the rotational period of the intermediate${\rm{CO}}_{2}^{2+}$ ions, which is demonstrated by the circle structure exhibited in the Newton diagram. We find that the sequential fragmentation channel plays a dominant role in the three-body Coulomb explosion of${\rm{(CO_2)}}_{2}^{4+}$ ions in comparison of the event ratio of the two fragmentation channels.-
Keywords:
- dimer /
- Coulomb explosion /
- sequential breakup /
- nonsequential fragmentation
[1] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[2] Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Nat. Commun. 3 1113Google Scholar
[3] Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar
[4] Kim H K, Gassert H, Schöffler M S, Titze J N, Waitz M, Voigtsberger J, Trinter F, Becht J, Kalinin A, Neumann N, Zhou C, Schmidt L Ph H, Jagutzki O, Czasch A, Merabet H, Schmidt-Böcking H, Jahnke T, Cassimi A, Dörner R 2013 Phys. Rev. A 88 042707Google Scholar
[5] Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar
[6] Zhou J Q, Yu X T, Luo S Z, Xue X R, Jia S K, Zhang X Y, Zhao Y T, Hao X T, He L H, Wang C C, Ding D J, Ren X G 2022 Nat. Commun. 13 5335Google Scholar
[7] Matsumoto J, Leredde A, Fléchard X, Hayakawa K, Shiromaru H, Rangama J, Zhou C L, Guillous S, Hennecart D, Muranaka T, Mery A, Gervais B, Cassimi A 2010 Phys. Rev. Lett. 105 263202Google Scholar
[8] Ren X G, Al Jabbour M E, Dorn A, Denifl S 2016 Nat. Commun. 7 11093Google Scholar
[9] Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar
[10] Wu J, Vredenborg A, Ulrich B, Schmidt L Ph H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dörner R 2011 Phys. Rev. Lett. 107 043003Google Scholar
[11] von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H, Sandner W 2013 Phys. Rev. Lett. 110 023001Google Scholar
[12] Amada M, Sato Y, Tsuge M, Hoshina K 2015 Chem. Phys. Lett. 624 24Google Scholar
[13] Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001Google Scholar
[14] Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507Google Scholar
[15] Wang Y L, Lai X Y, Yu S G, Sun R P, Liu X J, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X H, Kitzler-Zeiler M 2020 Phys. Rev. Lett. 125 063202Google Scholar
[16] Dehghany M, McKellar A R W, Afshari M, Moazzen-Ahmadi N 2010 Mol. Phys. 108 2195Google Scholar
[17] Xie X G, Wu C, Liu Y R, Huang W, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2014 Phys. Rev. A 90 033411Google Scholar
[18] Schriver A, Schriver-Mazzuoli L, Vigasin A A 2000 Vib. Spectrosc. 23 83Google Scholar
[19] Iskandar W, Gatton A S, Gaire B, Sturm F P, Larsen K A, Champenois E G, Shivaram N, Moradmand A, Williams J B, Berry B, Severt T, Ben-Itzhak I, Metz D, Sann H, Weller M, Schoeffler M, Jahnke T, Dörner R, Slaughter D, Weber Th 2019 Phys. Rev. A 99 043414Google Scholar
[20] Song P, Zhu Y L, Yang Y, Wang X W, Meng C S, Zhao J, Liu J L, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2022 Phys. Rev. A 106 023109Google Scholar
[21] Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar
[22] Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju P K, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar
[23] Yu X T, Zhang X Y, Hu X Q, Zhao X N, Ren D X, Li X K, Ma P, Wang C C, Wu Y, Luo S Z, Ding D J 2022 Phys. Rev. Lett. 129 023001Google Scholar
[24] Fan Y M, Wu C Y, Xie X G, Wang P, Zhong X Q, Shao Y, Sun X F, Liu Y Q, Gong Q H 2016 Chem. Phys. Lett. 653 108Google Scholar
[25] Song P, Wang X W, Meng C S, Dong W P, Li Y J, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2019 Phys. Rev. A 99 053427Google Scholar
[26] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar
[27] Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Schmidt-Böcking H, Spielberger L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2917Google Scholar
[28] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar
[29] Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L Ph H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schiesser A, Berger R, Schoeffler M S 2013 Science 341 1096Google Scholar
[30] Lu C X, Shi M H, Pan S Z, Zhou L R, Qiang J J, Lu P F, Zhang W B, Wu J 2023 J. Chem. Phys. 158 094302Google Scholar
[31] Singh R K, Lodha G S, Sharma V, Prajapati I A, Subramanian K P, Bapat B 2006 Phys. Rev. A 74 022708Google Scholar
[32] Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar
[33] Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar
[34] Jana M R, Ghosh P N, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2011 Phys. Rev. A 84 062715Google Scholar
[35] Wu C Y, Wu C, Fan Y M, Xie X G, Wang P, Deng Y K, Liu Y Q, Gong Q H 2015 J. Chem. Phys. 142 124303Google Scholar
[36] Xie X G, Wu C Y, Yuan Z Q, Ye D F, Wang P, Deng Y K, Fu L B, Liu J, Liu Y Q, Gong Q H 2015 Phys. Rev. A 92 023417Google Scholar
-
图 1 光离子-光离子-光离子符合谱, 即
$ {\rm{CO_2}} $ 超音速分子束冷靶在光强为$ {\rm{8 \times 10^{14}}} \; {\rm{W/cm^2}} $ 的强飞秒激光场作用下产生的3个碎片离子的关联图. 其中横轴是第2个离子的飞行时间, 纵轴是第1个和第3个离子的飞行时间之和Fig. 1. Coincidence spectrum of the time of flight of three correlated fragmentation ions for
$ {\rm{CO_2}} $ gas breakup using intense femtosecond laser field, namely, photoion-photoion-photoion coincidence plot. The X axis is the time of flight for the second ion, whereas the Y axis is the sum of the time of flight for the first and third ions图 2 三体库仑爆炸产生的
$ {\rm{CO^ + }} $ 和$ {\rm{O^ + }} $ 离子的动能关联图. 将数据分为两部分以作为通道筛选的条件, 其中红色梯形内的数据记为通道Ⅰ, 此部分数据对应序列解离; 红色圆圈内的数据记为通道Ⅱ, 此部分数据对应非序列解离Fig. 2. Kinetic energy correlation diagram of
$ {\rm{CO^ + }} $ and$ {\rm{O^ + }} $ ions generated by three-body Coulomb explosion. We divide the data into two parts, which can be used as the conditions for channel selecting. The data in the red trapezoid is denoted as channel Ⅰ, which is sequential dissociation; and the data in the red circle is denoted as channel Ⅱ, which is non-sequential dissociation图 4
$ {\rm{(CO_2) }}_{2}^{4 + } $ 离子三体库仑爆炸序列解离通道(黄色正三角线)和非序列解离通道(紫色倒三角线)释放的动能谱, 以及参考通道$ {\rm{(CO_2)_2^{4 + }}} \rightarrow {\rm{CO}}_{2}^{2 + }+ {\rm{CO}}_{2}^{2 + } $ (棕色方形线)和$ {\rm{CO_2^{2 + }}} \rightarrow {\rm{CO^ + }} + {\rm{O^ + }} $ (蓝色圆圈线)的动能谱Fig. 4. Kinetic energy release of
$ {\rm{(CO_2) }}_{2}^{4 + } $ ion by the three-body Coulomb explosion sequential (yellow triangle line) and nonsequential fragmentation (purple inverted triangular line) channel, and kinetic energy release from reference channels$ {\rm{(CO_2)_2^{4 + }}} \rightarrow {\rm{CO}}_{2}^{2 + } + {\rm{CO}}_{2}^{2 + } $ (brown square line) and$ {\rm{CO_2^{2 + }}} \rightarrow {\rm{CO^ + }} + {\rm{O^ + }} $ (blue circle line) -
[1] Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar
[2] Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A, Dörner R 2012 Nat. Commun. 3 1113Google Scholar
[3] Schnorr K, Senftleben A, Kurka M, Rudenko A, Foucar L, Schmid G, Broska A, Pfeifer T, Meyer K, Anielski D, Boll R, Rolles D, Kübel M, Kling M F, Jiang Y H, Mondal S, Tachibana T, Ueda K, Marchenko T, Simon M, Brenner G, Treusch R, Scheit S, Averbukh V, Ullrich J, Schröter C D, Moshammer R 2013 Phys. Rev. Lett. 111 093402Google Scholar
[4] Kim H K, Gassert H, Schöffler M S, Titze J N, Waitz M, Voigtsberger J, Trinter F, Becht J, Kalinin A, Neumann N, Zhou C, Schmidt L Ph H, Jagutzki O, Czasch A, Merabet H, Schmidt-Böcking H, Jahnke T, Cassimi A, Dörner R 2013 Phys. Rev. A 88 042707Google Scholar
[5] Jahnke T, Sann H, Havermeier T, Kreidi K, Stuck C, Meckel M, Schöffler M, Neumann N, Wallauer R, Voss S, Czasch A, Jagutzki O, Malakzadeh A, Afaneh F, Weber T, Schmidt-Böcking H, Dörner R 2010 Nat. Phys. 6 139Google Scholar
[6] Zhou J Q, Yu X T, Luo S Z, Xue X R, Jia S K, Zhang X Y, Zhao Y T, Hao X T, He L H, Wang C C, Ding D J, Ren X G 2022 Nat. Commun. 13 5335Google Scholar
[7] Matsumoto J, Leredde A, Fléchard X, Hayakawa K, Shiromaru H, Rangama J, Zhou C L, Guillous S, Hennecart D, Muranaka T, Mery A, Gervais B, Cassimi A 2010 Phys. Rev. Lett. 105 263202Google Scholar
[8] Ren X G, Al Jabbour M E, Dorn A, Denifl S 2016 Nat. Commun. 7 11093Google Scholar
[9] Ulrich B, Vredenborg A, Malakzadeh A, Meckel M, Cole K, Smolarski M, Chang Z, Jahnke T, Dörner R 2010 Phys. Rev. A 82 013412Google Scholar
[10] Wu J, Vredenborg A, Ulrich B, Schmidt L Ph H, Meckel M, Voss S, Sann H, Kim H, Jahnke T, Dörner R 2011 Phys. Rev. Lett. 107 043003Google Scholar
[11] von Veltheim A, Manschwetus B, Quan W, Borchers B, Steinmeyer G, Rottke H, Sandner W 2013 Phys. Rev. Lett. 110 023001Google Scholar
[12] Amada M, Sato Y, Tsuge M, Hoshina K 2015 Chem. Phys. Lett. 624 24Google Scholar
[13] Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001Google Scholar
[14] Gong X C, Heck S, Jelovina D, Perry C, Zinchenko K, Lucchese R, Wörner H J 2022 Nature 609 507Google Scholar
[15] Wang Y L, Lai X Y, Yu S G, Sun R P, Liu X J, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X H, Kitzler-Zeiler M 2020 Phys. Rev. Lett. 125 063202Google Scholar
[16] Dehghany M, McKellar A R W, Afshari M, Moazzen-Ahmadi N 2010 Mol. Phys. 108 2195Google Scholar
[17] Xie X G, Wu C, Liu Y R, Huang W, Deng Y K, Liu Y Q, Gong Q H, Wu C Y 2014 Phys. Rev. A 90 033411Google Scholar
[18] Schriver A, Schriver-Mazzuoli L, Vigasin A A 2000 Vib. Spectrosc. 23 83Google Scholar
[19] Iskandar W, Gatton A S, Gaire B, Sturm F P, Larsen K A, Champenois E G, Shivaram N, Moradmand A, Williams J B, Berry B, Severt T, Ben-Itzhak I, Metz D, Sann H, Weller M, Schoeffler M, Jahnke T, Dörner R, Slaughter D, Weber Th 2019 Phys. Rev. A 99 043414Google Scholar
[20] Song P, Zhu Y L, Yang Y, Wang X W, Meng C S, Zhao J, Liu J L, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2022 Phys. Rev. A 106 023109Google Scholar
[21] Lin K, Hu X Q, Pan S Z, Chen F, Ji Q Y, Zhang W B, Li H X, Qiang J J, Sun F H, Gong X C, Li H, Lu P F, Wang J G, Wu Y, Wu J 2020 J. Phys. Chem. Lett. 11 3129Google Scholar
[22] Rajput J, Severt T, Berry B, Jochim B, Feizollah P, Kaderiya B, Zohrabi M, Ablikim U, Ziaee F, Raju P K, Rolles D, Rudenko A, Carnes K D, Esry B D, Ben-Itzhak I 2018 Phys. Rev. Lett. 120 103001Google Scholar
[23] Yu X T, Zhang X Y, Hu X Q, Zhao X N, Ren D X, Li X K, Ma P, Wang C C, Wu Y, Luo S Z, Ding D J 2022 Phys. Rev. Lett. 129 023001Google Scholar
[24] Fan Y M, Wu C Y, Xie X G, Wang P, Zhong X Q, Shao Y, Sun X F, Liu Y Q, Gong Q H 2016 Chem. Phys. Lett. 653 108Google Scholar
[25] Song P, Wang X W, Meng C S, Dong W P, Li Y J, Lv Z H, Zhang D W, Zhao Z X, Yuan J M 2019 Phys. Rev. A 99 053427Google Scholar
[26] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 66 1463Google Scholar
[27] Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Schmidt-Böcking H, Spielberger L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 2917Google Scholar
[28] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Dörner R 2010 Phys. Rev. Lett. 104 103201Google Scholar
[29] Pitzer M, Kunitski M, Johnson A S, Jahnke T, Sann H, Sturm F, Schmidt L Ph H, Schmidt-Böcking H, Dörner R, Stohner J, Kiedrowski J, Reggelin M, Marquardt S, Schiesser A, Berger R, Schoeffler M S 2013 Science 341 1096Google Scholar
[30] Lu C X, Shi M H, Pan S Z, Zhou L R, Qiang J J, Lu P F, Zhang W B, Wu J 2023 J. Chem. Phys. 158 094302Google Scholar
[31] Singh R K, Lodha G S, Sharma V, Prajapati I A, Subramanian K P, Bapat B 2006 Phys. Rev. A 74 022708Google Scholar
[32] Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601Google Scholar
[33] Wang E L, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711Google Scholar
[34] Jana M R, Ghosh P N, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2011 Phys. Rev. A 84 062715Google Scholar
[35] Wu C Y, Wu C, Fan Y M, Xie X G, Wang P, Deng Y K, Liu Y Q, Gong Q H 2015 J. Chem. Phys. 142 124303Google Scholar
[36] Xie X G, Wu C Y, Yuan Z Q, Ye D F, Wang P, Deng Y K, Fu L B, Liu J, Liu Y Q, Gong Q H 2015 Phys. Rev. A 92 023417Google Scholar
计量
- 文章访问数: 3919
- PDF下载量: 113
- 被引次数: 0