搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米颗粒二聚体阵列的消光截面

殷澄 陆成杰 笪婧 张瑞耕 阚雪芬 韩庆邦 许田

引用本文:
Citation:

金属纳米颗粒二聚体阵列的消光截面

殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田

Extinction cross section of dimer array of metallic nanoparticles

Yin Cheng, Lu Cheng-Jie, Da Jing, Zhang Rui-Geng, Kan Xue-Fen, Han Qing-Bang, Xu Tian
PDF
HTML
导出引用
  • 相比单粒子阵列, 金属纳米颗粒的二聚体阵列的共振效应受更多因素的影响, 包括阵列的组成方式、二聚体的结构和朝向、粒子的形状、大小等, 因此具有更好的可调性. 本文基于修正长波近似法, 通过引入两种粒子之间的阵列因子矩阵, 修正了两种粒子的极化率, 从而得到了二聚体阵列的消光截面的解析公式. 在此基础上, 讨论了整个阵列在不同偏振光激发下的共振的调制和偏振特性.
    Surface lattice resonance (SLR) relies on both the lattice structure and its unit cell, which usually contains metallic nanoparticles. Since the full width half maximum of the lattice resonance is much narrower than that of localized surface plasmon resonance of a single particle, it is receiving attention increasingly. Based on the modified long-wavelength approximation, in this paper we derive an analytical expression for the extinction cross section of the dimer array of metallic nanoparticles.Comparing with the single particle array, good tunability can be achieved by the lattice resonance of the dimer array, which is influenced by more factors, including the arrangement of the array, the structural parameter and the rotation of the dimer, the shape and size of the particles, etc. First, the polarizabilities of the two kinds of particles in the dimer array are adjusted by introducing a matrix of the array factors, which take into account the influence of dipole fields of every particle. Then a simple expression of the resonance condition for the SLR of the dimmer array is obtained. The proposed model can be applied to a wide variety of dimer arrays of ellipsoid particles, and the applied method can be generalized to more complicated structure like polymer arrays. In this paper we further discuss the polarization dependence and ability to modulate the lattice resonance, by changing the excitation condition and the structural parameters of the dimer array. It is found that the resonances of the dimmer array can be classified as three main categories. The resonance related to the particles is independent of the variation of the dimmer arrangement or the array structure. On the other hand, the resonances corresponding to the dimmer and the array rely crucially on the structural parameters. By carefully adjusting the structural parameters, we can modulate the specific resonance effectively. This research is of theoretical importance for studying the SLR for more complicated structures and may find potential applications in the design of new photoelectric chip via nanoparticle array.
      通信作者: 阚雪芬, kanxf.tt@foxmail.com
    • 基金项目: 中央高校基本科研业务费(批准号: 2017B14714)、常州市科技计划项目(批准号: CJ20180048)、江苏省研究生科研与实践创新计划(批准号: KYCX20_0433, B200203143)和国家自然科学基金(批准号: 61701261)资助的课题
      Corresponding author: Kan Xue-Fen, kanxf.tt@foxmail.com
    • Funds: Project supported by the Fundamental Research Fund for the Central Universities of China (Grant No. 2017B14714), the Science and Technology Project of Changzhou, China (Grant No. CJ20180048), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant Nos. KYCX20_0433, B200203143), and the National Natural Science Foundation of China (Grant No. 61701261)
    [1]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721Google Scholar

    [2]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Luo H, Wen S 2018 Photonics Res. 6 511Google Scholar

    [3]

    Michaeli L, Keren-Zur S, Avayu O, Suchowski H, Ellenbogen T 2017 Phys. Rev. Lett. 118 243904Google Scholar

    [4]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H 2013 Light Sci. Appl. 2 e112Google Scholar

    [5]

    Mi X, Wang Y, Li R, Sun M, Zhang Z, Zheng H 2019 Nanophotonics 8 487Google Scholar

    [6]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 101 087403Google Scholar

    [7]

    Zhou W, Odom T W 2011 Nat. Nanotechnol. 6 423Google Scholar

    [8]

    Tsoi S, Bezares F J, Giles A, Long J P, Glembocki O J, Caldwell J D, Owrutsky J 2016 Appl. Phys. Lett. 108 111101Google Scholar

    [9]

    Wei A, Kim B, Sadtler B, Tripp S L 2001 ChemPhysChem 2 743Google Scholar

    [10]

    Hu J, Wang D, Bhowmik D, Liu T, Deng S, Knudson M P, Ao X, Odom T W 2019 ACS Nano 13 4613Google Scholar

    [11]

    Lin L, Zheng Y 2015 Nanoscale 7 12205Google Scholar

    [12]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [13]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [14]

    周强, 林树培, 张朴, 陈学文 2019 物理学报 68 147104Google Scholar

    Zhou Q, Lin S, Zhang P, Chen X 2019 Acta Phys. Sin. 68 147104Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X, Shi H, Zhang S, Chen Z, Zheng M, Wang Y, Xue S, Zhang J, Duan H 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    Alexander M 2009 J. Opt. Soc. Am. B 26 517

    [17]

    Hulst H C 1981 Light Scattering by Small Particles (New York: Dover Publications, Inc.) p4

    [18]

    殷澄, 许田, 陈秉岩, 韩庆邦 2015 物理学报 64 164202Google Scholar

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202Google Scholar

    [19]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (Hoboken: John Wiley & Sons) p82

    [20]

    Cai W, Shalaev V 2010 Optical Metamaterials (New York: Springer) p19

  • 图 1  金属纳米颗粒二聚体的矩形阵列模型(插图显示了二聚体的排列方式)

    Fig. 1.  Array of metallic nanoparticle dimers (Inset: Arrange-ment of the dimer).

    图 2  在不同偏振光激发下, 单粒子阵列与二聚体阵列的透过率对比 (a)两种阵列模型示意图; (b)二聚体阵列在偏振角度分别为30°, 60°和120°的情况下的透过率; (c), (d)单粒子阵列和二聚体阵列的透过率

    Fig. 2.  Comparison of the transmission of two different structures under illumination with different polarization: (a) The diagrams of the two arrays; (b) the transmission spectrum of the dimer under different polarization ${\theta _{\rm{p}}} = 30^{\circ}, 60^{\circ}, 120^{\circ} $, respectively; (c), (d) the calculated transmission of the single particle array and the dimer array, respectively.

    图 3  在水平偏振光激发下, 方形二聚体阵列的透过率模拟图 (a)计算的模型和参数的定义; (b), (c), (d)二聚体结构参数对透过率的调制效果

    Fig. 3.  The transmission of the square array of the nanoparticle dimers under illumination of x-axis polarized light: (a) The calculated model and the parameters definition; (b), (c), (d) the modulation on the array transmission by adjusting the dimer arrangement.

  • [1]

    Väkeväinen A I, Moerland R J, Rekola H T, Eskelinen A P, Martikainen J P, Kim D H, Törmä P 2014 Nano Lett. 14 1721Google Scholar

    [2]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Luo H, Wen S 2018 Photonics Res. 6 511Google Scholar

    [3]

    Michaeli L, Keren-Zur S, Avayu O, Suchowski H, Ellenbogen T 2017 Phys. Rev. Lett. 118 243904Google Scholar

    [4]

    Sun M, Zhang Z, Wang P, Li Q, Ma F, Xu H 2013 Light Sci. Appl. 2 e112Google Scholar

    [5]

    Mi X, Wang Y, Li R, Sun M, Zhang Z, Zheng H 2019 Nanophotonics 8 487Google Scholar

    [6]

    Kravets V G, Schedin F, Grigorenko A N 2008 Phys. Rev. Lett. 101 087403Google Scholar

    [7]

    Zhou W, Odom T W 2011 Nat. Nanotechnol. 6 423Google Scholar

    [8]

    Tsoi S, Bezares F J, Giles A, Long J P, Glembocki O J, Caldwell J D, Owrutsky J 2016 Appl. Phys. Lett. 108 111101Google Scholar

    [9]

    Wei A, Kim B, Sadtler B, Tripp S L 2001 ChemPhysChem 2 743Google Scholar

    [10]

    Hu J, Wang D, Bhowmik D, Liu T, Deng S, Knudson M P, Ao X, Odom T W 2019 ACS Nano 13 4613Google Scholar

    [11]

    Lin L, Zheng Y 2015 Nanoscale 7 12205Google Scholar

    [12]

    Rechberger W, Hohenau A, Leitner A, Krenn J R, Lamprecht B, Aussenegg F R 2003 Opt. Commun. 220 137Google Scholar

    [13]

    Engheta N, Salandrino A, Alù A 2005 Phys. Rev. Lett. 95 095504Google Scholar

    [14]

    周强, 林树培, 张朴, 陈学文 2019 物理学报 68 147104Google Scholar

    Zhou Q, Lin S, Zhang P, Chen X 2019 Acta Phys. Sin. 68 147104Google Scholar

    [15]

    朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高 2019 物理学报 68 147304Google Scholar

    Zhu X, Shi H, Zhang S, Chen Z, Zheng M, Wang Y, Xue S, Zhang J, Duan H 2019 Acta Phys. Sin. 68 147304Google Scholar

    [16]

    Alexander M 2009 J. Opt. Soc. Am. B 26 517

    [17]

    Hulst H C 1981 Light Scattering by Small Particles (New York: Dover Publications, Inc.) p4

    [18]

    殷澄, 许田, 陈秉岩, 韩庆邦 2015 物理学报 64 164202Google Scholar

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202Google Scholar

    [19]

    Bohren C F, Huffman D R 2008 Absorption and Scattering of Light by Small Particles (Hoboken: John Wiley & Sons) p82

    [20]

    Cai W, Shalaev V 2010 Optical Metamaterials (New York: Springer) p19

  • [1] 曾平, 宋盼, 王小伟, 赵晶, 张栋文, 袁建民, 赵增秀. 强飞秒激光场下二氧化碳二聚体四价离子的多体解离动力学. 物理学报, 2023, 72(18): 187901. doi: 10.7498/aps.72.20230699
    [2] 李业军, 郭静, 马俊平, 唐显, 李鑫, 闫冰. BCl3同位素分离中二聚体的浓度. 物理学报, 2022, 71(24): 243401. doi: 10.7498/aps.71.20221517
    [3] 杨其利, 张兴坊, 刘凤收, 闫昕, 梁兰菊. 劈裂环-盘二聚体结构的多重Fano共振. 物理学报, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [4] 杨其利, 张兴坊. 劈裂环-盘二聚体结构的多重Fano共振研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210855
    [5] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] 虞华康, 刘伯东, 吴婉玲, 李志远. 表面等离激元增强的光和物质相互作用. 物理学报, 2019, 68(14): 149101. doi: 10.7498/aps.68.20190337
    [7] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [8] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [9] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [10] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [11] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [12] 王文慧, 张孬. 银纳米线表面等离激元波导的能量损耗. 物理学报, 2018, 67(24): 247302. doi: 10.7498/aps.67.20182085
    [13] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [14] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦. 物理学报, 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [15] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [16] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [17] 陈兆权, 夏广庆, 刘明海, 郑晓亮, 胡业林, 李平, 徐公林, 洪伶俐, 沈昊宇, 胡希伟. 气体压强及表面等离激元影响表面波等离子体电离发展过程的粒子模拟. 物理学报, 2013, 62(19): 195204. doi: 10.7498/aps.62.195204
    [18] 韩清瑶, 汤俊超, 张弨, 王川, 马海强, 于丽, 焦荣珍. 局域态密度对表面等离激元特性影响的研究. 物理学报, 2012, 61(13): 135202. doi: 10.7498/aps.61.135202
    [19] 董太源, 叶坤涛, 刘维清. 表面波等离子体源的发展现状. 物理学报, 2012, 61(14): 145202. doi: 10.7498/aps.61.145202
    [20] 程木田. 经典光场相干控制金属纳米线表面等离子体传输. 物理学报, 2011, 60(11): 117301. doi: 10.7498/aps.60.117301
计量
  • 文章访问数:  7756
  • PDF下载量:  158
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-23
  • 修回日期:  2020-09-06
  • 上网日期:  2021-01-03
  • 刊出日期:  2021-01-20

/

返回文章
返回