搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究

马昕 龚威 马盈盈 傅东伟 韩舸 相成志

引用本文:
Citation:

基于匹配算法的脉冲差分吸收CO2激光雷达的稳频研究

马昕, 龚威, 马盈盈, 傅东伟, 韩舸, 相成志

Research on the frequency stabilization of pulsed differential absorbing lidar for CO2 detection based on matching algorithm

Ma Xin, Gong Wei, Ma Ying-Ying, Fu Dong-Wei, Han Ge, Xiang Cheng-Zhi
PDF
导出引用
  • 利用差分吸收激光雷达探测大气CO2, 可以获得其浓度的垂直分布, 对于研究碳源、碳汇的过程有重要意义. 设计了一套种子注入的脉冲差频激光器系统, 作为差分吸收激光雷达的激光光源. 针对脉冲差分吸收CO2激光雷达on波长的高精度稳频的研究空白, 本文提出一种基于匹配的on波长的连续稳频算法. 其基本思想是采用分子饱和吸收法, 测量通过双路吸收池后的差分信号, 计算其光学厚度值(optical depth, OD), 获得实测的伪吸收谱, 当监测到on波长发漂移后, 进行连续的波长调节, 获取其OD值, 最后基于一维的图像匹配算法, 将OD值作为灰度值, 利用图像匹配原理, 进行OD值匹配, 确定当前输出波长在伪吸收谱中的位置, 进而调节至on波长, 实现on波长的连续、稳定输出. 实验结果表明, 提出的稳频算法能够很好的满足高精度的稳频要求, 同时差平方和法在该应用中是最优的, 稳频精度可达到0.3 pm.
    The differential absorption lidar (DIAL) can help us to obtain the vertical distribution of the atmospheric CO2 concentration, which is important to the study of carbon sources and carbon sinks. We design a seeder injected pulsed laser system, working as the laser source of the CO2 DIAL. Unlike the other CO2 DIALs, our laser source is the result of difference frequency of two lasers at the wavelengths of 1064 nm and 634 nm, respectively. It should be pointed out that the high frequency (wavelength) accuracy and stability of the emission laser, especially the on-line one, are greatly required in the CO2 DIAL system. However, the mechanical properties of the dye laser (634 nm) and the application of laser difference frequency technique make the wavelength drift constantly; besides, the extremely unstable energy of the pulsed laser increases the difficulty in identifying and stabilizing the on-line wavelength. Hence, a fast and efficient frequency (wavelength) stabilization method is needed to achieve a stable emission wavelength. Aiming at the research gap of the high precision requirements of on-line laser for this kind of pulsed DIAL, we propose a frequency stabilization method based on matching algorithm. The basic idea is to utilize the saturable absorption of CO2 molecule, by measuring the differential residual-intensity after the laser passing through dual absorption cells to calculate the optical depth (OD) and obtain the so-called pseudo CO2 absorption spectrum, which can be used to identify the on-line laser accurately. Finally, based on the matching algorithm of one-dimensional image, treating the OD as the gray value in the image, we implement the OD matching as a most important part in the process of frequency stabilization, and determine the exact position of the real-time output laser in the measured pseudo absorption spectrum. Thus, when some errors happen to the monitored ODs, by continuously adjusting the wavelength of the laser, the proposed method can fulfill the wavelength adjustment and accomplish the continuous frequency stabilization for on-line laser. Experimental results show that the frequency stabilization algorithm based on OD matching can satisfy the requirements for pulsed on-line laser frequency stabilization, and the sum of squares of deviation method is the optimal one in this application, with a stabilization accuracy of 0.3 pm. Besides, the proposed method can also be introduced in other laser frequency stabilization.
    • 基金项目: 国家自然科学基金(批准号: 41127901)和中央高校基本科研业务费专项资金资助(批准号: 2014619020201)资助的课题.
    • Funds: Project supported by National Nature Science Foundation of China (Grant No. 41127901) and the Fundamental Research Funds for the Central Universities (Grant No. 2014619020201).
    [1]

    Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61

    [2]

    Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597

    [3]

    Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201

    [4]

    Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10

    [5]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13

    [6]

    Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047

    [7]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [8]

    Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1

    [9]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [10]

    Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]

    [11]

    Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]

    [12]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335

    [13]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214]

    [14]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

    [15]

    Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069

    [16]

    Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004

    [17]

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020702]

    [18]

    Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]

    [19]

    Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [20]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533

    [22]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [23]

    Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]

    [24]

    Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]

  • [1]

    Bauer J E, Cai W J, Raymond P A, Bianchi T S, Hopkinson C S, Regnier P A 2013 Nature 504 61

    [2]

    Regnier P, Friedlingstein P, Ciais P, Mackenzie F T, Gruber N, Janssens I A, Laruelle G G, Lauerwald R, Luyssaert S, Andersson A J 2013 Nature Geoscience 6 597

    [3]

    Fung I Y, Doney S C, Lindsay K, John J 2005 Proc. Natl. Acad. Sci. USA 102 11201

    [4]

    Pliutau D, Prasad N S 2012 Laser Applications to Chemical, Security and Environmental Analysis San Diego, California, United States, January 29-February 1, 2012 LT6B.10

    [5]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J P, Sun X L, Hasselbrack W E, Yu A, Amediek A, Choi Y, Browell E V 2010 Proc. SPIE7832, Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VI, Toulouse, France, September 20, 2010 78320D-13

    [6]

    Numata K, Chen J R, Wu S T, Abshire J B, Krainak M A 2011 Appl. Opt. 50 1047

    [7]

    Sakaizawa D, Nagasawa C, Nagai T, Abo M, Shibata Y, Nakazato M, Sakai T 2009 Appl. Opt. 48 748

    [8]

    Allan G R, Riris H, Abshire J B, X. Sun, Wilson E, Burris J F, Krainak M A 2008 IEEE Aerospace Conference, Big Sky, Montana, United States, March 1-8, 2008 p1

    [9]

    Abshire J B, Riris H, Allan G R, Weaver C J, Mao J, Sun X, Hasselbrack W E, Kawa S R, Biraud S 2010 Tellus B 62 770

    [10]

    Yu H, Hu S, Wu X Q, Cao K F, Meng X Q, Yuan K E, Huang J, Shao S S, Xu Z H 2012 Acta Optica Sinica 32 (8) 13 (in Chinese) [于海利, 胡顺星, 吴晓庆, 曹开法, 孟祥谦, 苑克娥, 黄见, 邵石生, 徐之海 2012光学学报 32 (8) 13]

    [11]

    Wu J, Wang X H, Fang Y H, Xiong W, Shi H L, Qiao Y L 2011 Acta Opt. Sin. 31 0101 (in Chinese) [吴军, 王先华, 方勇华, 熊伟, 施海亮, 乔延利 2011 光学学报 31 0101]

    [12]

    Zhao P T, Zhang Y C, Wang L, Hu S X, Su J, Cao K F, Zhao Y F, Hu H L 2008 Chin. Phys. B 17 010335

    [13]

    Liu H, Shu R, Hong G L, Zheng L, Ge Y, Hu Y H 2014 Acta Phys. Sin. 63 104214 (in Chinese) [刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华 2014 物理学报 63 104214]

    [14]

    Cheng B, Wang Z Y, Wu B, Xu A P, Wang Q Y, Xu Y F, Lin Q 2014 Chin. Phys. B 23 104222

    [15]

    Raybaut M, Schmid T, Godard A, Mohamed A K, Lefebvre M, Marnas F, Flamant P, Bohman A, Geiser P, Kaspersen P 2009 Opt. Lett. 34 2069

    [16]

    Ishii S, Mizutani K, Fukuoka H, Ishikawa T, Baron, P Iwai H, Aoki T, Itabe T, Sato A, Asai K 2010 Proc. SPIE 7860, Lidar Remote Sensing for Environmental Monitoring XI Incheon, Republic of Korea, October 28, 2010 786004

    [17]

    Ge Y, Hu Y H, Shu R, Hong G L 2015 Acta Phys. Sin. 64 020702 (in Chinese) [葛烨, 胡以华, 舒嵘, 洪光烈 2015 物理学报 64 020702]

    [18]

    Yan J X, Gong S S, Liu Z S 2011 Environmental monitoring lidar (Beijing: Science Press) (Ed. 2nd) pp184-185 (in Chinese) [阎吉祥, 龚顺生, 刘智深 2011 环境监测激光雷达 (北京: 科学出版社) (第2版) 第184-185页]

    [19]

    Gong W, Ma X, Dong Y N, Lin H, Li J 2014 Opt. Laser Technol. 56 52

    [20]

    Rothman L, Gordon I, Babikov Y, Barbe A, Chris Benner D, Bernath P, Birk M, Bizzocchi L, Boudon V, Brown L 2013 J. Quant. Spectrosc. Ra. 130 4

    [21]

    Rothman L S, Gordon I E, Barbe A, Benner D C, Bernath P F, Birk M, Boudon V, Brown L R, Campargue A, Champion J P 2009 J. Quant. Spectrosc. Ra. 110 533

    [22]

    Zhu X F, Lin Z X, Liu L M, Shao J Y, Gong W 2014 Acta Phys. Sin. 63 174203 (in Chinese) [朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威 2014 物理学报 63 174203]

    [23]

    Xiang C Z, Gong W, Ma X, Cheng X W 2014 Acta Optia Sinica 9 161 (in Chinese) [相成志, 龚威, 马昕, 程学武 2014 光学学报 9 161]

    [24]

    Zhang J Q, Pan L, Wang S G 2009 Photogrammetry (Hubei: Wuhan University Press) pp152-157 (in Chinese) [张剑清, 潘励, 王树根 2009 摄影测量学 (湖北: 武汉大学出版社) 第152-157页]

  • [1] 熊枫, 彭志敏, 王振, 丁艳军, 吕俊复, 杜艳君. CO2/CO干扰下基于腔衰荡吸收光谱的痕量H2S浓度测量. 物理学报, 2023, 72(4): 043302. doi: 10.7498/aps.72.20221851
    [2] 王振, 杜艳君, 丁艳军, 彭志敏. 波长调制-直接吸收方法在线监测大气中CH4和CO2浓度. 物理学报, 2020, 69(6): 064205. doi: 10.7498/aps.69.20191569
    [3] 王倩, 毕研盟, 杨忠东. 气溶胶对大气CO2短波红外遥感探测影响的模拟分析. 物理学报, 2018, 67(3): 039202. doi: 10.7498/aps.67.20171993
    [4] 邵君宜, 林兆祥, 刘林美, 龚威. 1.572 μm附近CO2吸收光谱的测量. 物理学报, 2017, 66(10): 104206. doi: 10.7498/aps.66.104206
    [5] 李志彬, 马宏亮, 曹振松, 孙明国, 黄印博, 朱文越, 刘强. 2μm波段高灵敏度离轴积分腔装置实际大气CO2测量. 物理学报, 2016, 65(5): 053301. doi: 10.7498/aps.65.053301
    [6] 吴丰成, 李昂, 谢品华, 陈浩, 凌六一, 徐晋, 牟福生, 张杰, 申进朝, 刘建国, 刘文清. 车载多轴差分吸收光谱探测对流层NO2分布研究. 物理学报, 2015, 64(11): 114211. doi: 10.7498/aps.64.114211
    [7] 李雁鹏, 于术娟, 陈彦军. 不同取向角下CO2分子波长依赖的垂直谐波效率. 物理学报, 2015, 64(18): 183102. doi: 10.7498/aps.64.183102
    [8] 韩舸, 龚威, 马昕, 相成志, 梁艾琳, 郑玉新. 地基CO2廓线探测差分吸收激光雷达. 物理学报, 2015, 64(24): 244206. doi: 10.7498/aps.64.244206
    [9] 朱湘飞, 林兆祥, 刘林美, 邵君宜, 龚威. 温度压强对CO2吸收光谱的影响. 物理学报, 2014, 63(17): 174203. doi: 10.7498/aps.63.174203
    [10] 刘豪, 舒嵘, 洪光烈, 郑龙, 葛烨, 胡以华. 连续波差分吸收激光雷达测量大气CO2. 物理学报, 2014, 63(10): 104214. doi: 10.7498/aps.63.104214
    [11] 周海金, 刘文清, 司福祺, 窦科. 多轴差分吸收光谱技术测量近地面NO2体积混合比浓度方法研究. 物理学报, 2013, 62(4): 044216. doi: 10.7498/aps.62.044216
    [12] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [13] 孙友文, 谢品华, 徐晋, 周海金, 刘诚, 王杨, 刘文清, 司福祺, 曾议. 采用加权函数修正的差分光学吸收光谱反演环境大气中的CO2垂直柱浓度. 物理学报, 2013, 62(13): 130703. doi: 10.7498/aps.62.130703
    [14] 王杨, 谢品华, 李昂, 曾议, 徐晋, 司福祺. 直射太阳光差分吸收光谱法测量合肥NO2 整层柱浓度. 物理学报, 2012, 61(11): 114209. doi: 10.7498/aps.61.114209
    [15] 徐晋, 谢品华, 司福祺, 李昂, 刘文清. 机载多轴差分吸收光谱技术获取对流层NO2垂直柱浓度的研究. 物理学报, 2012, 61(2): 024204. doi: 10.7498/aps.61.024204
    [16] 吕晓静, 翁春生, 李宁. 高压环境下1.58 μm波段CO2吸收光谱特性分析. 物理学报, 2012, 61(23): 234205. doi: 10.7498/aps.61.234205
    [17] 蒙大桥, 罗文华, 李赣, 陈虎翅. Pu(100)表面吸附CO2的密度泛函研究. 物理学报, 2009, 58(12): 8224-8229. doi: 10.7498/aps.58.8224
    [18] 丁长林, 万重怡. 脉冲CO2激光器的多频动力学模型. 物理学报, 2006, 55(3): 1165-1170. doi: 10.7498/aps.55.1165
    [19] 范品忠, E.FILL. 共振光泵X射线激光的抽运谱线和吸收谱线波长匹配实验. 物理学报, 1996, 45(2): 205-209. doi: 10.7498/aps.45.205
    [20] 傅恩生, 王裕民, 程兆谷, 窦爱荣. 10.6μm的CO2激光的电光频移. 物理学报, 1979, 28(5): 24-31. doi: 10.7498/aps.28.24
计量
  • 文章访问数:  5424
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-04
  • 修回日期:  2015-04-19
  • 刊出日期:  2015-08-05

/

返回文章
返回