搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究

杨志清 王飞利 林常规

引用本文:
Citation:

20GeS2·80Sb2S3硫系玻璃的析晶行为及动力学机理研究

杨志清, 王飞利, 林常规

Crystallization behavior and kinetics mechanism of 20GeS2·80Sb2S3 chalcogenide glass

Yang Zhi-Qing, Wang Fei-Li, Lin Chang-Gui
PDF
导出引用
  • 实现玻璃微晶化过程控制的基础是要充分认识其析晶行为及动力学机理. 利用示差扫描量热法和析晶热处理等手段, 研究发现 20GeS2·80Sb2S3硫系玻璃属于表面析晶, 在268℃(Tg+30℃)下热处理60 h, 可以获得表面约40 μm的Sb2S3晶层复合玻璃陶瓷样品. 在此基础上, 利用非等温法从理论上分析该玻璃的析晶动力学机理. 计算得到其析晶活化能Ec为(223.6±24.1)kJ·mol-1, 在热处理温度(268℃)下的析晶速率常数K为1.23×10-4 s-1, 属于较难析晶的玻璃组成; 玻璃的晶体生长指数m和晶体生长维数n均为2, 表明其Sb2S3相的析晶行为是二维生长过程, 与析晶实验结果完全相符. 由此可知, 对于Sb2S3晶体复合的硫系玻璃陶瓷样品可通过玻璃粉末压片烧结、带铸法或丝网印刷法制备获得, 为今后功能硫系玻璃的开发提供实验依据和理论指导.
    Knowledge of crystallization behavior and kinetics mechanism is essential to achieve the controllable crystallization. Surface crystallization of 20GeS2·80Sb2S3 chalcogenide glass is realized using differential scanning calorimeter technique and heat treatment method. An about 40 μm thick Sb2S3 crystal layer is precipitated after heat treatment at 268℃ (Tg+30℃) for 60 h. Then, non-isothermal method is employed to theoretically analyze the crystallization kinetics of this glass sample. Crystallization activation energy Ec is calculated to be (223.6±24.1) kJ·mol-1, and crystallization rate constant K at 268℃ was obtained to be 1.23×10-4 s-1, indicating that the crystallization of 20GeS2·80Sb2S3 glass is more difficult than that of other chalcogenide glass system, such as GeS2-Ga2S3. The crystal growth index, m and crystal growth dimensionality, n both are equal to 2, which suggests that the crystallization of Sb2S3 glass phase is of 2D growth process. This work would contribute to the fabrication of Sb2S3 crystallites embedded chalcogenide glass-ceramics.
    • 基金项目: 国家自然科学基金(批准号:61108057)和宁波大学王宽诚幸福基金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61108057) and the K. C. Wong Magna Foundation of Ningbo University, China.
    [1]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四, 林常规 2011 物理学报 60 084217]

    [2]

    Lin C G, Li Z B, Qin H J, Ni W H, Li Y Y, Dai S X 2012 Acta Phys. Sin. 61 154212 (in Chinese) [林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋 2012 物理学报 61 154212]

    [3]

    Lin C G, Calvez L, Li Z B, Dai S X, Tao H Z, Ma H L, Zhang X H, Moine B, Zhao X J 2013 J. Am. Ceram. Soc. 96 816

    [4]

    Lin C G, Calvez L, Ying L, Chen F F, Song B A, Shen X, Dai S X, Zhang X H 2011 Appl. Phys. A 104 615

    [5]

    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918

    [6]

    Chen H P, Tao H Z, Wu Q D, Zhao X J 2013 J. Am. Ceram. Soc. 96 801

    [7]

    Tao H Z, Zhao X J, Liu Q M 2013 J. Non-Crystal. Solids DOI: 10.1016/j.jnoncrysol.2013.02.001

    [8]

    Lin C G, Calvez L, Bureau B, Tao H Z, Allix M, Hao Z X, Seznec V, Zhang X H, Zhao X H 2010 Phys. Chem. Chem. Phys. 12 3780

    [9]

    Lin C G, Tao H Z, Pan R K, Zheng X L, Dong G P, Zang H C, Zhao X J 2008 Chem. Phys. Lett. 460 125

    [10]

    Delaizir G, Lucas P, Zhang X, Ma H, Bureau B, Lucas J 2007 J. Am. Ceram. Soc. 90 2073

    [11]

    Lin C G, Dai S X, Liu C, Song B A, Xu Y S, Chen F F, Heo J 2012 Appl. Phys. Lett. 100 231910

    [12]

    Itzhaik Y, Niitsoo O, Page M, Hodes G 2009 J. Phys. Chem. C 113 4254

    [13]

    Lou W J, Chen M, Wang X B, Liu W M 2007 Chem. Mater. 19 872

    [14]

    Yang J, Liu Y C, Lin H M, Chen C C 2004 Adv. Mater. 16 713

    [15]

    Xiao X D, Liu Q M, Dong G P, Zhao X J 2007 Opt. Commun. 274 456

    [16]

    Lin C G, Li Z B, Ying L, Xu Y S, Zhang P Q, Dai S X, Xu T F, Nie Q H 2012 J. Phys. Chem. C 116 5862

    [17]

    Lin C G, Calvez L, Rozé M, Tao H Z, Zhang X H, Zhao X J 2009 Appl. Phys. A 97 713

    [18]

    Bansal N, Hyatt M 1989 J. Mater. Res. 4 1257

    [19]

    Johnson W, Mehl R 1939 Trans. Am. Inst. Min. Metall. Eng. 135 416

    [20]

    Avrami M 1939 J. Chem. Phys. 7 1103

    [21]

    Avrami M 1940 J. Chem. Phys. 8 212

    [22]

    Ozawa T 1971 Polymer 12 150

  • [1]

    Song B A, Dai S X, Xu T F, Nie Q H, Shen X, Wang X S, Lin C G 2011 Acta Phys. Sin. 60 084217 (in Chinese) [宋宝安, 戴世勋, 徐铁峰, 聂秋华, 沈祥, 王训四, 林常规 2011 物理学报 60 084217]

    [2]

    Lin C G, Li Z B, Qin H J, Ni W H, Li Y Y, Dai S X 2012 Acta Phys. Sin. 61 154212 (in Chinese) [林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋 2012 物理学报 61 154212]

    [3]

    Lin C G, Calvez L, Li Z B, Dai S X, Tao H Z, Ma H L, Zhang X H, Moine B, Zhao X J 2013 J. Am. Ceram. Soc. 96 816

    [4]

    Lin C G, Calvez L, Ying L, Chen F F, Song B A, Shen X, Dai S X, Zhang X H 2011 Appl. Phys. A 104 615

    [5]

    Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M 2005 Adv. Mater. 17 918

    [6]

    Chen H P, Tao H Z, Wu Q D, Zhao X J 2013 J. Am. Ceram. Soc. 96 801

    [7]

    Tao H Z, Zhao X J, Liu Q M 2013 J. Non-Crystal. Solids DOI: 10.1016/j.jnoncrysol.2013.02.001

    [8]

    Lin C G, Calvez L, Bureau B, Tao H Z, Allix M, Hao Z X, Seznec V, Zhang X H, Zhao X H 2010 Phys. Chem. Chem. Phys. 12 3780

    [9]

    Lin C G, Tao H Z, Pan R K, Zheng X L, Dong G P, Zang H C, Zhao X J 2008 Chem. Phys. Lett. 460 125

    [10]

    Delaizir G, Lucas P, Zhang X, Ma H, Bureau B, Lucas J 2007 J. Am. Ceram. Soc. 90 2073

    [11]

    Lin C G, Dai S X, Liu C, Song B A, Xu Y S, Chen F F, Heo J 2012 Appl. Phys. Lett. 100 231910

    [12]

    Itzhaik Y, Niitsoo O, Page M, Hodes G 2009 J. Phys. Chem. C 113 4254

    [13]

    Lou W J, Chen M, Wang X B, Liu W M 2007 Chem. Mater. 19 872

    [14]

    Yang J, Liu Y C, Lin H M, Chen C C 2004 Adv. Mater. 16 713

    [15]

    Xiao X D, Liu Q M, Dong G P, Zhao X J 2007 Opt. Commun. 274 456

    [16]

    Lin C G, Li Z B, Ying L, Xu Y S, Zhang P Q, Dai S X, Xu T F, Nie Q H 2012 J. Phys. Chem. C 116 5862

    [17]

    Lin C G, Calvez L, Rozé M, Tao H Z, Zhang X H, Zhao X J 2009 Appl. Phys. A 97 713

    [18]

    Bansal N, Hyatt M 1989 J. Mater. Res. 4 1257

    [19]

    Johnson W, Mehl R 1939 Trans. Am. Inst. Min. Metall. Eng. 135 416

    [20]

    Avrami M 1939 J. Chem. Phys. 7 1103

    [21]

    Avrami M 1940 J. Chem. Phys. 8 212

    [22]

    Ozawa T 1971 Polymer 12 150

  • [1] 许思维, 王训四, 沈祥. 元素取代对Ge-As(Sb)-Se玻璃转变阈值行为的影响. 物理学报, 2024, 73(5): 057102. doi: 10.7498/aps.73.20231797
    [2] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究. 物理学报, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [3] 杨安平, 王雨伟, 张少伟, 李兴隆, 杨志杰, 李耀程, 杨志勇. Ge-Sb-Se硫系玻璃的折射率和热光系数. 物理学报, 2019, 68(1): 017801. doi: 10.7498/aps.68.20181869
    [4] 胡博, 吴越豪, 郑雨璐, 戴世勋. 2 μm波段硫系玻璃微球激光器的制备和表征. 物理学报, 2019, 68(6): 064209. doi: 10.7498/aps.68.20181817
    [5] 吴波, 赵浙明, 王训四, 江岭, 密楠, 潘章豪, 张培晴, 刘自军, 聂秋华, 戴世勋. Te基远红外硫系玻璃光纤的制备及性能分析. 物理学报, 2017, 66(13): 134208. doi: 10.7498/aps.66.134208
    [6] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [7] 赵浙明, 吴波, 刘雅洁, 江岭, 密楠, 王训四, 刘自军, 刘硕, 潘章豪, 聂秋华, 戴世勋. 低损耗Ge-As-Se-Te硫系玻璃远红外光纤的性能分析. 物理学报, 2016, 65(12): 124205. doi: 10.7498/aps.65.124205
    [8] 杨艳, 陈云翔, 刘永华, 芮扬, 曹烽燕, 杨安平, 祖成奎, 杨志勇. Ge-As-S硫系玻璃的结构与性能调控. 物理学报, 2016, 65(12): 127801. doi: 10.7498/aps.65.127801
    [9] 乔北京, 陈飞飞, 黄益聪, 戴世勋, 聂秋华, 徐铁峰. Ge-Se基硫系玻璃在通信波段的三阶非线性与光谱特性研究. 物理学报, 2015, 64(15): 154216. doi: 10.7498/aps.64.154216
    [10] 林常规, 翟素敏, 李卓斌, 屈国顺, 顾少轩, 陶海征, 戴世勋. GeS2-In2S3硫系玻璃的物化性质与晶化行为研究. 物理学报, 2015, 64(5): 054208. doi: 10.7498/aps.64.054208
    [11] 甘渝林, 王丽, 苏雪琼, 许思维, 孔乐, 沈祥. 用拉曼光谱测量GeSbSe玻璃的热导率. 物理学报, 2014, 63(13): 136502. doi: 10.7498/aps.63.136502
    [12] 杨佩龙, 戴世勋, 易昌申, 张培晴, 王训四, 吴越豪, 许银生, 林常规. 中红外色散平坦硫系光子晶体光纤设计及性能研究. 物理学报, 2014, 63(1): 014210. doi: 10.7498/aps.63.014210
    [13] 易昌申, 戴世勋, 张培晴, 王训四, 沈祥, 徐铁峰, 聂秋华. 新型单模大模场红外硫系玻璃光子晶体光纤设计研究. 物理学报, 2013, 62(8): 084206. doi: 10.7498/aps.62.084206
    [14] 张巍, 陈昱, 付晶, 陈飞飞, 沈祥, 戴世勋, 林常规, 徐铁峰. Ge-Sb-Se硫系薄膜制备及光学特性研究. 物理学报, 2012, 61(5): 056801. doi: 10.7498/aps.61.056801
    [15] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究. 物理学报, 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [16] 林常规, 李卓斌, 覃海娇, 倪文豪, 李燕颖, 戴世勋. GeS2-Ga2S3-CsI硫系玻璃的析晶行为及其组成依赖研究. 物理学报, 2012, 61(15): 154212. doi: 10.7498/aps.61.154212
    [17] 刘硕, 李曙光, 付博, 周洪松, 冯荣普. 中红外高保偏硫系玻璃双芯光子晶体光纤耦合特性研究. 物理学报, 2011, 60(3): 034217. doi: 10.7498/aps.60.034217
    [18] 戴世勋, 彭波, 乐放达, 王训四, 沈祥, 徐铁峰, 聂秋华. Dy3+掺杂Ge-Ga-S-CsI玻璃中红外发光特性研究. 物理学报, 2010, 59(5): 3547-3553. doi: 10.7498/aps.59.3547
    [19] 聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥. Ga对新型远红外Te基硫系玻璃光学性能的影响. 物理学报, 2010, 59(11): 7949-7955. doi: 10.7498/aps.59.7949
    [20] 沈祥, 聂秋华, 徐铁峰, 戴世勋, 王训四, 吴礼刚. GeSe2-Sb2Se3-CsCl玻璃的光学性质与析晶动力学研究. 物理学报, 2010, 59(3): 2045-2050. doi: 10.7498/aps.59.2045
计量
  • 文章访问数:  5004
  • PDF下载量:  521
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-08
  • 修回日期:  2013-06-03
  • 刊出日期:  2013-09-05

/

返回文章
返回