搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HBr空芯光纤气体激光器的振动热池多能级理论模型与设计仿真

危超 余炫 雷诚 王自昱 刘胜 王度

引用本文:
Citation:

HBr空芯光纤气体激光器的振动热池多能级理论模型与设计仿真

危超, 余炫, 雷诚, 王自昱, 刘胜, 王度

Vibrational thermal pool multi-level theoretical model and design simulation of HBr-filled hollow-core fiber gas laser

Wei Chao, Yu Xuan, Lei Cheng, Wang Zi-Yu, Liu Sheng, Wang Du
PDF
HTML
导出引用
  • 空芯光纤气体激光器已逐渐发展为一种重要的中红外激光光源, 在实验上取得了良好进展, 但现有的基于传统速率方程模型的理论设计方法仍不完善. 本文提出了一种溴化氢(HBr)空芯光纤的振动热池建模方法, 该模型可充分考虑空芯光纤气体激光器内振转弛豫对腔内增益特性的影响, 计算显示激光斜效率、阈值和瓶颈效应与实验吻合良好. 此外, 基于该模型, 本文探讨了脉冲泵浦的光子泄漏现象, 通过引入泄漏因子, 得到了与实验结果接近的脉冲波形的弛豫振荡和激光斜率效率, 有效解决了脉冲泵浦模型中的泵浦溢出问题. 本研究提出的振动热池理论模型可适用于各类气体填充的空芯光纤气体激光器.
    The hollow-core fiber gas laser (HCFGL) has developed into a significant mid-infrared laser source, but the development of theoretical model still lags behind experimental progress. In this work, we propose a multi-level vibrational thermal pool (VTP) model of HBr-filled HCFs, which comprehensively considers the rovibrational relaxation effects on laser gain in reasonable approximations of transition coefficients, and studies the laser characteristics on multi-line lasing, bottleneck effect, line competition, etc. The VTP model shows more precise results of laser slope efficiency, and threshold than previous models while fitting the experimental data very well, and successfully predicts an output bottleneck at 1 W pump. The P-branch laser is relatively advantageous over the R-branch laser for its larger Einstein $A$ coefficient and emission cross section, and the seed injection can intensify the line competition and reach the highest P4 power proportion of 80%. The VTP model reveals that the output of various pump lines has a pattern similar to the Boltzmann distribution, suggesting that the distribution of ground rotational levels limits the laser gain of pump lines. Moreover, we discuss the photon leakage in high-energy pulsed pumping conditions. With the introduction of the leaking coefficient, this model shows relaxation oscillations and laser slope efficiencies close to experimental values and greater than the results in the CW condition, and solves the overpump problem in pulsed pump simulation. Finally, we confirm that the photon leakage is intensified at high repetition rate and the leaking coefficient should relate to the pulse repetition rate. This work develops a comprehensive modeling method for MIR laser simulation and this model is also applicable to various gas-filled HCFGLs.
      通信作者: 王度, wdxz@foxmail.com
    • 基金项目: 国家自然科学基金(批准号: 62075200, 12374295)和中央高校基本科研业务费专项资金(批准号: 2042022gf0004, 2042023kf0113)资助的课题.
      Corresponding author: Wang Du, wdxz@foxmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62075200, 12374295) and the Fundamental Research Funds for the Central Universitie, China (Grant Nos. 2042022gf0004, 2042023kf0113).
    [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Wang Z F, Zhou Z Y, Li Z X, Zhang N Q, Chen Y B 2016 Proceedings of the SPIE, Infrared, Millimeter-Wave, and Terahertz Technologies IV Beijing, China, October 12–14, 2016 p96

    [3]

    Lei W, Jagadish C 2008 J. Appl. Phys. 104 091101Google Scholar

    [4]

    Guo B P, Wang Y, Peng C, Luo G, Le H Q 2003 Proceedings of the SPIE, Spectral Imaging: Instrumentation, Applications, and Analysis II March, 2003 p1

    [5]

    Naithani S 2014 J. Laser Micro Nanoen. 9 147Google Scholar

    [6]

    Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177Google Scholar

    [7]

    Austin D R, Kafka K R P, Lai Y H, Wang Z, Blaga C I, Chowdhury E A 2018 Opt. Lett. 43 3702Google Scholar

    [8]

    Wang Y Q, Fang J N, Zheng T T, Liang Y, Hao Q, Wu E, Yan M, Huang K, Zeng H P 2021 Laser Photonics Rev. 15 2100189Google Scholar

    [9]

    Kletecka C S, Campbell N, Jones C R, Nicholson J W, Rudolph W 2004 IEEE J. Quantum Electron. 40 1471Google Scholar

    [10]

    Ratanavis A, Campbell N, Nampoothiri A V V, Rudolph W 2009 IEEE J. Quantum Electron. 45 488Google Scholar

    [11]

    Koen W, Jacobs C, Bollig C, Strauss H J, Daniel Esser M J, Botha L R 2014 Opt. Lett. 39 3563Google Scholar

    [12]

    Fan G, Balčiūnas T, Kanai T, Flöry T, Andriukaitis G, Schmidt B E, Légaré F, Baltuška A 2016 Optica 3 1308Google Scholar

    [13]

    Peng X, Mielke M, Booth T 2011 Opt. Express 19 923Google Scholar

    [14]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [15]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M, Hugonnot E, Scol F, Vincetti L, Gérôme F, Benabid F 2017 Optica 4 209Google Scholar

    [16]

    Carcreff J, Cheviré F, Galdo E, Lebullenger R, Gautier A, Adam J L, Coq D L, Brilland L, Chahal R, Renversez G, Troles J 2021 Opt. Mater. Express 11 198Google Scholar

    [17]

    Wang F, Lee J, Phillips D J, Holliday S G, Chua S L, Bravo-Abad J, Joannopoulos J D, Soljačić M, Johnson S G, Everitt H O 2018 Proc. Natl. Acad. Sci. 115 6614Google Scholar

    [18]

    Chevalier P, Amirzhan A, Wang F, Piccardo M, Johnson S G, Capasso F, Everitt H O 2019 Science 366 856Google Scholar

    [19]

    Chevalier P, Amirzhan A, Rowlette J, Stinson H T, Pushkarsky M, Day T, Capasso F, Everitt H O 2022 Appl. Phys. Lett. 120 081108Google Scholar

    [20]

    Lane R A, Madden T J 2018 Opt. Express 26 15693Google Scholar

    [21]

    Zhou Z Y, Huang W, Cui Y L, Li H, Pei W X, Wang M, Wang Z F 2023 Opt. Express 31 4739Google Scholar

    [22]

    Zhou Z Y, Cui Y L, Huang W, Li H, Wang M, Gao S F, Wang Y Y, Wang Z F 2023 J. Light. Technol. 41 333Google Scholar

    [23]

    Miller H C, Radzykewycz D T, Hager G 1994 IEEE J. Quantum Electron. 30 2395Google Scholar

    [24]

    Ratanavis A 2010 Ph. D. Dissertation (Albuquerque: The University of New Mexico

    [25]

    Oka T 1974 Advances in Atomic, Molecular, and Optical Physics 9 127Google Scholar

    [26]

    Matteson W, De Lucia F 1983 IEEE J. Quantum Electron. 19 1284Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949Google Scholar

  • 图 1  HBr空芯光纤模型与能级跃迁示意图

    Fig. 1.  Schematic of HBr-filled HCF and HBr energy level structure.

    图 2  不同气压下光纤输出与泵浦功率分布 (a) 1 mbar; (b) 3 mbar; (c) 5 mbar; (d) 10 mbar

    Fig. 2.  Output power of a 5 m long HCF varying with gas pressure: (a) 1 mbar; (b) 3 mbar; (c) 5 mbar; (d) 10 mbar.

    图 3  不同泵浦功率下光纤总输出与气压关系(实线代表VTP模型计算的总输出功率, 虚线代表4能级模型计算的总输出功率) (a) 1 W; (b) 3 W; (c) 5 W; (d) 10 W

    Fig. 3.  Output power of a 5 m long HCF varying with pump power: (a) 1 W; (b) 3 W; (c) 5 W; (d) 10 W. The solid line and dashed line represent the total output power obtained by VTP model and 4-level model, respectively.

    图 4  (a) 注入1 mW P4小信号光与不注入时的光纤内部光强分布, 其中实线代表有P4小信号注入时的输出, 虚线代表ASE的输出; (b) 光纤总输出(蓝色实线)与P4光占比(红色虚线)随P4信号光的变化

    Fig. 4.  (a) Spatial distribution of laser power. The solid line represents the spatial power distribution with injected P4 signal, and the dashed line represents only ASE; (b) the total output power (blue line) and the proportion of P4 emission (red dashed line) varying with seed power.

    图 5  不同泵浦谱线在10 W功率下的输出(x轴代表泵浦谱线, y轴代表输出功率, 柱状图代表相应的4 μm频点输出谱线, 红色曲线代表总输出功率) (a) R分支泵浦谱线输出; (b) P分支泵浦谱线输出

    Fig. 5.  Output power of different pump lines with 10 W pump power: (a) The output power of R-branch pump lines; (b) the output of P-branch pump lines. The x axis denotes the pump line, the y axis represents the output power, the bars represent the output lines in the 4 μm band, and the red line represent the total output power.

    图 6  (a)光纤内部1, 2, 3, 4, 5 m处的归一化脉冲波形, 其中蓝色为泵浦光, 红色为总输出波形; (b)在5 mbar下5 W泵浦时光纤内部的光功率分布

    Fig. 6.  (a) Normalized pulse shape at 1, 2, 3, 4, 5 m of the HCF; (b) the spatial power distribution in HCF under 5 mbar with 5 W pump

    图 7  (a) 脉冲激光在不同气压下输出功率与吸收功率的关系; (b) 脉冲激光在不同泵浦功率下输出与气压的关系

    Fig. 7.  (a) Output power varying with pulsed pump power under different gas pressure; (b) the output power varying with gas pressure under difference pump power.

    图 8  脉冲HCFGL的输出功率、半峰全宽与泵浦重频的关系, 其中绿色和蓝色实线代表残余泵浦光与总输出光的功率, 红色虚线代表总输出光的半峰全宽

    Fig. 8.  Output power and FWHM of HCFGL pulse varying with repetition rate. The green and blue line represent the residual pump power and total output laser power varying with repetition rate, respectively; the dashed red line represent the FWHM of output laser varying with repetition rate.

    表 1  10 mbar下HBr气体分子R2泵浦谱线的常数(k, A, $\varOmega $)、光纤的损耗系数($\alpha $)

    Table 1.  Constants (k, A, $\varOmega $) of HBr molecule with R2 pumping at 10 mbar and absorption coefficients ($\alpha $) of HCF.

    常数 取值 常数 取值
    ${k_{10}}$/s–1 5×107 ${A_{{\text{pump}}}}$/s–1 0.14
    ${k_{21}}$/s–1 1×107 ${A_{\text{P}}}$/s–1 8.56
    ${k_{20}}$/s–1 2.5×106 ${A_{\text{R}}}$/s–1 5.91
    ${k_{{\text{ro1}}}}$/s–1 7.5×107 $\varOmega $ 10–7
    ${k_{{\text{ro2}}}}$/s–1 7.5×107 ${\alpha _{{\text{pump}}}}$/(dB·m–1) 0.53
    ${k_{{\text{ro3}}}}$/s–1 7.5×106 ${\alpha _{\text{P}}}$/(dB·m–1) 0.3
    ${k_{{\text{ro4}}}}$/s–1 7.5×107 ${\alpha _{\text{R}}}$/(dB·m–1) 0.3
    下载: 导出CSV
  • [1]

    Ycas G, Giorgetta F R, Baumann E, Coddington I, Herman D, Diddams S A, Newbury N R 2018 Nat. Photonics 12 202Google Scholar

    [2]

    Wang Z F, Zhou Z Y, Li Z X, Zhang N Q, Chen Y B 2016 Proceedings of the SPIE, Infrared, Millimeter-Wave, and Terahertz Technologies IV Beijing, China, October 12–14, 2016 p96

    [3]

    Lei W, Jagadish C 2008 J. Appl. Phys. 104 091101Google Scholar

    [4]

    Guo B P, Wang Y, Peng C, Luo G, Le H Q 2003 Proceedings of the SPIE, Spectral Imaging: Instrumentation, Applications, and Analysis II March, 2003 p1

    [5]

    Naithani S 2014 J. Laser Micro Nanoen. 9 147Google Scholar

    [6]

    Seddon A B 2011 Int. J. Appl. Glass Sci. 2 177Google Scholar

    [7]

    Austin D R, Kafka K R P, Lai Y H, Wang Z, Blaga C I, Chowdhury E A 2018 Opt. Lett. 43 3702Google Scholar

    [8]

    Wang Y Q, Fang J N, Zheng T T, Liang Y, Hao Q, Wu E, Yan M, Huang K, Zeng H P 2021 Laser Photonics Rev. 15 2100189Google Scholar

    [9]

    Kletecka C S, Campbell N, Jones C R, Nicholson J W, Rudolph W 2004 IEEE J. Quantum Electron. 40 1471Google Scholar

    [10]

    Ratanavis A, Campbell N, Nampoothiri A V V, Rudolph W 2009 IEEE J. Quantum Electron. 45 488Google Scholar

    [11]

    Koen W, Jacobs C, Bollig C, Strauss H J, Daniel Esser M J, Botha L R 2014 Opt. Lett. 39 3563Google Scholar

    [12]

    Fan G, Balčiūnas T, Kanai T, Flöry T, Andriukaitis G, Schmidt B E, Légaré F, Baltuška A 2016 Optica 3 1308Google Scholar

    [13]

    Peng X, Mielke M, Booth T 2011 Opt. Express 19 923Google Scholar

    [14]

    Michieletto M, Lyngsø J K, Jakobsen C, Lægsgaard J, Bang O, Alkeskjold T T 2016 Opt. Express 24 7103Google Scholar

    [15]

    Debord B, Amsanpally A, Chafer M, Baz A, Maurel M, Blondy J M, Hugonnot E, Scol F, Vincetti L, Gérôme F, Benabid F 2017 Optica 4 209Google Scholar

    [16]

    Carcreff J, Cheviré F, Galdo E, Lebullenger R, Gautier A, Adam J L, Coq D L, Brilland L, Chahal R, Renversez G, Troles J 2021 Opt. Mater. Express 11 198Google Scholar

    [17]

    Wang F, Lee J, Phillips D J, Holliday S G, Chua S L, Bravo-Abad J, Joannopoulos J D, Soljačić M, Johnson S G, Everitt H O 2018 Proc. Natl. Acad. Sci. 115 6614Google Scholar

    [18]

    Chevalier P, Amirzhan A, Wang F, Piccardo M, Johnson S G, Capasso F, Everitt H O 2019 Science 366 856Google Scholar

    [19]

    Chevalier P, Amirzhan A, Rowlette J, Stinson H T, Pushkarsky M, Day T, Capasso F, Everitt H O 2022 Appl. Phys. Lett. 120 081108Google Scholar

    [20]

    Lane R A, Madden T J 2018 Opt. Express 26 15693Google Scholar

    [21]

    Zhou Z Y, Huang W, Cui Y L, Li H, Pei W X, Wang M, Wang Z F 2023 Opt. Express 31 4739Google Scholar

    [22]

    Zhou Z Y, Cui Y L, Huang W, Li H, Wang M, Gao S F, Wang Y Y, Wang Z F 2023 J. Light. Technol. 41 333Google Scholar

    [23]

    Miller H C, Radzykewycz D T, Hager G 1994 IEEE J. Quantum Electron. 30 2395Google Scholar

    [24]

    Ratanavis A 2010 Ph. D. Dissertation (Albuquerque: The University of New Mexico

    [25]

    Oka T 1974 Advances in Atomic, Molecular, and Optical Physics 9 127Google Scholar

    [26]

    Matteson W, De Lucia F 1983 IEEE J. Quantum Electron. 19 1284Google Scholar

    [27]

    Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949Google Scholar

  • [1] 米浩婷, 杨安平, 黄梓轩, 田康振, 李跃兵, 马成, 刘自军, 沈祥, 杨志勇. Ga2S3-Sb2S3-Ag2S 硫系玻璃和光纤的制备及性能研究. 物理学报, 2023, 72(4): 047101. doi: 10.7498/aps.72.20221380
    [2] 周子昕, 黄印博, 卢兴吉, 袁子豪, 曹振松. 2 μm波段再入射离轴积分腔输出光谱设计与实验. 物理学报, 2019, 68(12): 129201. doi: 10.7498/aps.68.20190061
    [3] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器. 物理学报, 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [4] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [5] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [6] 张学智, 冯鸣, 张心正. 基于自相位调制效应的硅基中红外全光二极管. 物理学报, 2013, 62(2): 024201. doi: 10.7498/aps.62.024201
    [7] 石立超, 张巍, 金杰, 黄翊东, 彭江得. 中红外空心Bragg光纤的制备及在气体传感中的应用. 物理学报, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [8] 汤媛媛, 刘文清, 阚瑞峰, 张玉钧, 刘建国, 许振宇, 束小文, 张帅, 何莹, 耿辉, 崔益本. 基于室温脉冲量子级联激光器的NO气体检测中的光谱处理方法研究. 物理学报, 2010, 59(4): 2364-2368. doi: 10.7498/aps.59.2364
    [9] 邢文鑫, 张巍, 石立超, 王雯, 赵红, 李志广, 黄翊东, 彭江得. 用于气体痕量检测的中红外空心布拉格光纤. 物理学报, 2010, 59(12): 8640-8645. doi: 10.7498/aps.59.8640
    [10] 王浩, 刘国权, 岳景朝, 栾军华, 秦湘阁. MacPherson-Srolovitz晶粒长大速率方程的仿真验证. 物理学报, 2009, 58(13): 137-S140. doi: 10.7498/aps.58.137
    [11] 王 颖, 章岳光, 刘 旭, 陈为兰, 厉以宇. 节瘤缺陷对中红外高反射膜电场增强影响的数值分析. 物理学报, 2007, 56(11): 6588-6591. doi: 10.7498/aps.56.6588
    [12] 宋峰, 孟凡臻, 丁欣, 张潮波, 杨嘉, 张光寅. 1.54μmEr3+,Yb3+共掺玻璃激光器的速率方程及数值分析. 物理学报, 2002, 51(6): 1233-1238. doi: 10.7498/aps.51.1233
    [13] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
    [14] 刘晓东, 李曙光, 侯蓝田, 王慧田, 闵乃本. 中红外低浓度无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2117-2122. doi: 10.7498/aps.51.2117
    [15] 余建华, 赖建军, 黄建军, 王新兵, 丘军林. 槽型空心阴极放电中槽底阴极面的电子发射对放电的影响. 物理学报, 2002, 51(9): 2080-2085. doi: 10.7498/aps.51.2080
    [16] 田兆硕, 王骐, 李自勤, 王雨三. 电光调QCO2激光器的六温度模型理论与速率方程理论比较分析. 物理学报, 2001, 50(12): 2369-2374. doi: 10.7498/aps.50.2369
    [17] 赖建军, 余建华, 黄建军, 王新兵, 丘军林. 空心阴极直流放电的二维自洽模型描述和阴极溅射分析. 物理学报, 2001, 50(8): 1528-1533. doi: 10.7498/aps.50.1528
    [18] 张 益, 黄永箴, 吴荣汉. 用速率方程分析垂直腔面发射激光器的噪声. 物理学报, 1998, 47(2): 232-238. doi: 10.7498/aps.47.232
    [19] 宋峰, 姚建铨, 乔金元, 陈晓波, 张光寅. 双波长脉冲激光器的速率方程理论及其数值计算. 物理学报, 1997, 46(9): 1725-1730. doi: 10.7498/aps.46.1725
    [20] 张绮香, 王庭鸢, 张治国. 氮分子激光器的分段等效迴路及速率方程. 物理学报, 1979, 28(1): 125-131. doi: 10.7498/aps.28.125
计量
  • 文章访问数:  1599
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-24
  • 修回日期:  2024-06-15
  • 上网日期:  2024-06-18
  • 刊出日期:  2024-08-05

/

返回文章
返回