搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用自发拉曼散射建立三个原子节点的纠缠

刘艳红 周瑶瑶 闫智辉 贾晓军

引用本文:
Citation:

利用自发拉曼散射建立三个原子节点的纠缠

刘艳红, 周瑶瑶, 闫智辉, 贾晓军

Establishing of quantum entanglement among three atomic nodes via spontanenous Raman scattering

Liu Yan-Hong, Zhou Yao-Yao, Yan Zhi-Hui, Jia Xiao-Jun
PDF
HTML
导出引用
  • 量子纠缠是一种关键的量子资源. 随着量子信息技术的发展, 由量子通道和量子节点组成的量子网络成为研究的热点. 量子信息网络的建立需要在多个远距离的量子节点间建立纠缠, 它在分步式量子计算及量子因特网等方面有很重要的应用价值. 本文在光和原子混合纠缠的基础上, 提出了结合前馈网络建立三个独立的远程原子系综之间的连续变量确定性纠缠. 三个原子系综分别放置在三个远程的节点中, 每个节点首先通过自发拉曼散射过程制备光和原子的混合纠缠; 然后, 利用平衡零拍探测器测量三束Stokes光场干涉后的量子噪声, 并将测量的结果前馈到原子系综, 在三个独立的远距离的原子系综间建立纠缠; 最后, 利用来自三个原子系综的三束反斯托克斯光束的关联方差通过三组份不可分判据验证三个原子系综的纠缠. 该方案简单可行, 可以拓展到基于不同物理系统的量子节点, 甚至实现更多原子节点的纠缠, 从而实现大规模量子信息网络.
    Quantum entanglement is an essential quantum resource. With the development of quantum information science, quantum network consisting of quantum nodes and quantum channels has attracted extensive attention. The development of quantum information network requires the capability of generating, storing and distributing quantum entanglement among multiple quantum nodes. It is significant to construct the quantum information, and it has very important applications in the distributed quantum computation and quantum internet. Here we propose a simple and feasible scheme to deterministically entangle three distant atomic ensembles via the interference and feedforward network of the light-atom mixed entanglement. Firstly, three atomic ensembles placed at three remote nodes in a quantum network are prepared into the mixed entangled state of light and atomic ensembles via the spontaneous Raman scattering (SRS) process. Then, the first and second Stokes optical field are interfered on an R1T1 optical beam splitter (BS1), and one of the output optical fields from the first optical beam splitter is interfered with the third Stokes field on the second R2T2 optical beam splitter (BS2). The quantum fluctuations of the amplitude and phase quadratures of these three output optical fields from BS1 and BS2 are detected by three sets of balanced homodyne detectors, respectively. Finally, the detected signals of the amplitude and phase quadratures are fed to the three atomic ensembles via the radio frequency coils to establish the entanglement among three remote atomic ensembles. At the user-controlled time, three read optical pulses can be applied to these three atomic ensembles to convert the stored entangled state from the atomic spin waves into the anti-Stokes optical fields via the SRS process. According to the tripartite inseparability criterion, the correlation variance combinations of these three anti-Stokes optical fields can be used to verify the performance of entanglement of three atomic ensembles. This scheme can be extended to larger-scale quantum information network with different physical systems and more atomic nodes. Moreover, the entanglement distillation can be combined with this scheme to realize the entanglement among longer distance quantum nodes.
      通信作者: 刘艳红, 15135111277@163.com
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号: 61775127, 61925503, 11904218, 11804246, 12004276)、山西省高等学校科技创新项目(批准号: 2020L0516)、山西青年三晋学者项目、山西省高等学校创新人才支持计划、山西省“1331工程”重点学科建设计划和山西省自然科学基金(批准号: 201901D111293)资助的课题
      Corresponding author: Liu Yan-Hong, 15135111277@163.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 61775127, 61925503, 11904218, 11804246, 12004276), the Scientific and Technological Programs of Higher Education Institutions in Shanxi, China (Grant No. 2020L0516), the Program for Sanjin Scholars of Shanxi Province, China, the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China, the Fund for Shanxi “1331Project” Key Subjects Construction, China, and the Natural Science Foundation of Shanxi Province, China (Grant No. 201901D111293)
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [3]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [4]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [5]

    Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [6]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [7]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [8]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 物理学报 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [9]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [10]

    闫妍, 李淑静, 田龙, 王海 2016 物理学报 65 014205Google Scholar

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205Google Scholar

    [11]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [12]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [13]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [15]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nature Phys. 11 37Google Scholar

    [16]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [17]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [18]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [19]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [20]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [21]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [22]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H, Schoelkopf R J 2018 Nature Phys. 14 705Google Scholar

    [23]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [24]

    Clausen C, Usmani I, Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [25]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [26]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [27]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [28]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [29]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [30]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [31]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Upho M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [32]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [33]

    Usmani I, Clausen C, Bussières F, Sangouard N, Afzelius M, Gisin N 2012 Nature Photon. 6 234Google Scholar

    [34]

    Pfaff W, Hensen B J, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532Google Scholar

    [35]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [36]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar

    [37]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [38]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nature Photon. 13 210Google Scholar

    [41]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [42]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [43]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [44]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [45]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [46]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [47]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [48]

    Maring N, Farrera P, Kutluer K, Mazzera M, Heinze G, de Riedmatten H 2017 Nature 551 485Google Scholar

  • 图 1  三个原子系综确定性纠缠产生原理图

    Fig. 1.  Schematic diagram of deterministic entanglement generation among three atomic ensembles.

    图 2  原子系综关联方差之和E1, E2, E3随光学分束片BS2的反射率R2的变化曲线 (a), (c), (e) BS1的反射率${R_1} = 0.1,\; 0.2,\; $$ 0.3,\; 0.5$; (b), (d), (f) BS1的反射率${R_1} = 0.5, {{0}}{{.7, 0}}{{.9}}$

    Fig. 2.  Dependence of the correlation variance combinations of atomic ensembles E1, E2, E3 on the reflectivity R2 of the second optical beam splitter BS2: (a), (c), (e) Reflectivity ${R_1} = 0.1,\; 0.2,\; 0.3, \;0.5$ of BS1; (b), (d), (f) reflectivity ${R_1} = 0.5, 0.7, 0.9$ of BS1.

    图 3  原子系综关联方差之和E1, E2, E3与前馈增益因子${g_2}$的变化曲线 (a) ${g_1} = 0.7, \;0.{8},\; 0.9, \;1.{{0}}$时, E1的变化曲线; (b) ${g_3} = 0.{{7}},\; 0.{8},\; {{0}}{{.9}},\; 1.{{0}}$时, E3曲线; (c) ${g_1} = 0.{{7}},\; $$ 0.{8},\; {{0}}{{.9}},\; 1.{{0}}$时, E2的变化

    Fig. 3.  Correlation variance combinations E1, E2 and E3 versus the feedforward gain factor ${g_2}$: (a) The correlation variance combination E1 versus ${g_2}$ when ${g_1} = 0.{{7}},\; $$ 0.{8}, \;{{0}}{{.9}},\; 1.{{0}}$; (b) the correlation variance combinations E3 versus ${g_2}$ when ${g_3} = 0.{{7}},\; 0.{8}, \;{{0}}{{.9}},\; 1.{{0}}$; (c) the correlation variance combinations E2 versus ${g_2}$ when ${g_{1}} = 0.{{7}},\; 0.{8}, $$ {{0}}{{.9}},\; 1.{{0}}$.

  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [2]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [3]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [4]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [5]

    Parigi V, D'Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [6]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [7]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [8]

    刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀 2019 物理学报 68 034202Google Scholar

    Liu Y H, Wu L, Yan Z H, Jia X J, Peng K C 2019 Acta Phys. Sin. 68 034202Google Scholar

    [9]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [10]

    闫妍, 李淑静, 田龙, 王海 2016 物理学报 65 014205Google Scholar

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205Google Scholar

    [11]

    Specht H P, Nölleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [12]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [13]

    Langer C, Ozeri R, Jost J D, Chiaverini J, DeMarco B, Ben-Kish A, Blakestad R B, Britton J, Hume D B, Itano W M, Leibfried D, Reichle R, Rosenband T, Schaetz T, Schmidt P O, Wineland D J 2005 Phys. Rev. Lett. 95 060502Google Scholar

    [14]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [15]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2015 Nature Phys. 11 37Google Scholar

    [16]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [17]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [18]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [19]

    Riedinger R, Wallucks A, Marinković I, Löschnauer C, Aspelmeyer M, Hong S, Gröblacher S 2018 Nature 556 473Google Scholar

    [20]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [21]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [22]

    Axline C J, Burkhart L D, Pfaff W, Zhang M Z, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H, Schoelkopf R J 2018 Nature Phys. 14 705Google Scholar

    [23]

    Kurpiers P, Magnard P, Walter T, Royer B, Pechal M, Heinsoo J, Salathé Y, Akin A, Storz S, Besse J C, Gasparinetti S, Blais A, Wallraff A 2018 Nature 558 264Google Scholar

    [24]

    Clausen C, Usmani I, Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Gisin N 2011 Nature 469 508Google Scholar

    [25]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussières F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [26]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S M, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [27]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [28]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [29]

    Chanelière T, Matsukevich D N, Jenkins S D, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [30]

    Eisaman M D, André A, Massou F, Fleischhauer M, Zibrov A S, Lukin M D 2005 Nature 438 837Google Scholar

    [31]

    Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Upho M, Mücke M, Figueroa E, Bochmann J, Rempe G 2012 Nature 484 195Google Scholar

    [32]

    Moehring D L, Maunz P, Olmschenk S, Younge K C, Matsukevich D N, Duan L M, Monroe C 2007 Nature 449 68Google Scholar

    [33]

    Usmani I, Clausen C, Bussières F, Sangouard N, Afzelius M, Gisin N 2012 Nature Photon. 6 234Google Scholar

    [34]

    Pfaff W, Hensen B J, Bernien H, van Dam S B, Blok M S, Taminiau T H, Tiggelman M J, Schouten R N, Markham M, Twitchen D J, Hanson R 2014 Science 345 532Google Scholar

    [35]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [36]

    Julsgaard B, Kozhekin A, Polzik E S 2001 Nature 413 400Google Scholar

    [37]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [38]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, Pan J W 2019 Nature Photon. 13 210Google Scholar

    [41]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [42]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [43]

    周瑶瑶, 田剑锋, 闫智辉, 贾晓军 2019 物理学报 68 064205Google Scholar

    Zhou Y Y, Tian J F, Yan Z H, Jia X J 2019 Acta Phys. Sin. 68 064205Google Scholar

    [44]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [45]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [46]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [47]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nature Photon. 10 381Google Scholar

    [48]

    Maring N, Farrera P, Kutluer K, Mazzera M, Heinze G, de Riedmatten H 2017 Nature 551 485Google Scholar

  • [1] 王彦飞, 朱悉铭, 张明志, 孟圣峰, 贾军伟, 柴昊, 王旸, 宁中喜. 基于前馈神经网络的等离子体光谱诊断方法. 物理学报, 2021, 70(9): 095211. doi: 10.7498/aps.70.20202248
    [2] 袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海. 原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验. 物理学报, 2021, 70(7): 070302. doi: 10.7498/aps.70.20201394
    [3] 孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永. 自拉曼混频黄绿波段三波长可切换激光. 物理学报, 2020, 69(12): 124201. doi: 10.7498/aps.69.20200324
    [4] 孟达, 从鑫, 冷宇辰, 林妙玲, 王佳宏, 喻彬璐, 刘雪璐, 喻学锋, 谭平恒. 黑磷的多声子共振拉曼散射. 物理学报, 2020, 69(16): 167803. doi: 10.7498/aps.69.20200696
    [5] 吴美梅, 张超, 张灿, 孙倩倩, 刘玫. 三维金字塔立体复合基底表面增强拉曼散射特性. 物理学报, 2020, 69(5): 058103. doi: 10.7498/aps.69.20191636
    [6] 秦康, 袁列荣, 谭骏, 彭胜, 王前进, 张学进, 陆延青, 朱永元. 金属亚波长结构的表面增强拉曼散射. 物理学报, 2019, 68(14): 147401. doi: 10.7498/aps.68.20190458
    [7] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响. 物理学报, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [8] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射. 物理学报, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [9] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [10] 董富通, 王菲鹿, 仲佳勇, 赵刚. Fe离子M壳层不可分辨跃迁系不透明度研究. 物理学报, 2012, 61(16): 163201. doi: 10.7498/aps.61.163201
    [11] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [12] 韩 茹, 杨银堂, 柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究. 物理学报, 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [13] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [14] 成 泽. 压电晶体拉曼散射的统一量子论. 物理学报, 2005, 54(11): 5435-5444. doi: 10.7498/aps.54.5435
    [15] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
    [16] 黄仕华, 莫玉东. Hg1-xCdxTe的共振拉曼散射. 物理学报, 2001, 50(5): 964-967. doi: 10.7498/aps.50.964
    [17] 陈永清. SPL(2,1)超代数的不可分解表示和不可约表示. 物理学报, 2000, 49(1): 5-10. doi: 10.7498/aps.49.5
    [18] 任孟眉, 江伟林, 朱沛然. 用卢瑟福背散射和弹性背散射分析高Tc超导薄膜中的元素组份及氧含量. 物理学报, 1994, 43(2): 340-344. doi: 10.7498/aps.43.340
    [19] 张富根. 圆偏振氟化氪激光在氢气中的前向受激喇曼散射. 物理学报, 1983, 32(9): 1211-1214. doi: 10.7498/aps.32.1211
    [20] 方励之, 刘永镇. 强磁场中相对论性电子的拉曼散射. 物理学报, 1976, 25(6): 521-526. doi: 10.7498/aps.25.521
计量
  • 文章访问数:  5179
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-10
  • 修回日期:  2020-12-11
  • 上网日期:  2021-04-16
  • 刊出日期:  2021-05-05

/

返回文章
返回