搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

BaTiO3单晶表面结构及表面液体pH值的影响

郑旭 李钊 顾月良 尹帅帅 姜继超 郭朴 邱志勇 李晓龙

引用本文:
Citation:

BaTiO3单晶表面结构及表面液体pH值的影响

郑旭, 李钊, 顾月良, 尹帅帅, 姜继超, 郭朴, 邱志勇, 李晓龙

Surface structure of BaTiO3 single crystal and the influence of pH value of liquid on its surface structure

Zheng Xu, Li Zhao, Gu Yue-Liang, Yin Shuai-Shuai, Jiang Ji-Chao, Guo Pu, Qiu Zhi-Yong, Li Xiao-Long
PDF
HTML
导出引用
  • 铁电材料是指在一定温度范围内具有自发极化, 且极化方向能被外加电场改变的材料, 而水是一种普遍存在的极性溶剂. 由于极性作用, 铁电材料与水及水溶液的界面存在着复杂的相互作用. 理解这些物理过程以及机制对于理论研究和实际应用都具有重要意义. 本工作利用同步辐射衍射技术研究了(001)方向极化BaTiO3单晶的表面结构, 并且研究了不同pH值液体对表面结构的影响. 结果表明, BaTiO3单晶含有一个电子密度较小的表面层, 并且由于极性的作用, BaTiO3单晶表面吸附了2.6 nm的水层. 表面滴加纯水后, BaTiO3的表面层结构没有明显的改变. 低温原位掠入射X射线衍射实验表明表面存在冰, 进一步验证表面吸附水层的存在. pH = 1的盐酸溶液也对BaTiO3表面结构没有显著影响, 可能是由于酸性溶液能稳定原有的极化方向. 但pH = 13的NaOH溶液可以使表面层变厚, 可能由于碱性溶液可以使表面极化减弱, 从而改变表面退极化场以及表面层厚度.
    Ferroelectric material is a kind of material with spontaneous polarization, and water is a common polar solvent. Due to polarity, there are complex interactions at the interface between ferroelectric materials and water/aqueous solutions. Understanding these physical processes and mechanisms is of great significance for both theoretical research and practical applications. Herein, the surface structure of (001) orientated BaTiO3 with (001) direction polarization single crystal is studied by synchrotron radiation diffraction technology, and the effects of liquids with different pH values on surface structure of BaTiO3 single crystal was also investigated. The results show that BaTiO3 single crystal contains a surface layer with a low electron density, and due to the effect of polarity, a 2.6 nm-thick water layer is adsorbed on the surface of BaTiO3 single crystal. After adding deionized water on the surface, there is no significant change in the surface layer structure of BaTiO3. Low temperature in-situ grazing incidence X-ray diffraction experiments indicate the presence of ice on the surface, further confirming the existence of adsorbed water layers on the surface. A hydrochloric acid solution with pH = 1 has no significant effect on the surface structure of BaTiO3, either, which is possibly due to the ability of acidic solutions to stabilize the original polarization direction. However, an NaOH solution with a pH = 13 can thicken the surface layer, which possibly results from the weakening of surface polarization caused by alkaline solutions, thereby changing the surface depolarization field and surface layer thickness.
      通信作者: 李晓龙, lixiaolong@zjlab.org.cn
    • 基金项目: 国家自然科学基金(批准号: 12275344, 12304132)和国家重点研发计划(批准号: 2022YFA1603901)资助的课题.
      Corresponding author: Li Xiao-Long, lixiaolong@zjlab.org.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275344, 12304132) and the National Key Research and Development Program of China (Grant No. 2022YFA1603901).
    [1]

    Chen L, Qian L M 2021 Friction 9 1Google Scholar

    [2]

    Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K 2003 J. Appl. Phys. 93 3223Google Scholar

    [3]

    Geneste G, Dkhil B 2009 Phys. Rev. B 79 235420Google Scholar

    [4]

    Domingo N, Pach E, Cordero-Edwards K, Perez-Dieste V, Escudero C, Verdaguer A 2019 Phys. Chem. Chem. Phys. 21 4920Google Scholar

    [5]

    Li X, Wang B C, Zhang T Y, Su Y J 2014 J. Phys. Chem. C 118 15910Google Scholar

    [6]

    Efe I, Spaldin N A, Gattinoni C 2021 J. Chem. Phys. 154 024702Google Scholar

    [7]

    Chornik B, Fuenzalida V A, Grahmann C R, Labbe R 1997 Vacuum 48 161Google Scholar

    [8]

    Wegmann M, Watson L, Hendry A 2004 J. Am. Ceram. Soc. 87 371Google Scholar

    [9]

    Fuenzalida V M, Pilleux M E, Eisele I 1999 Vacuum 55 81Google Scholar

    [10]

    Wang J L, Gaillard F, Pancotti A, Gautier B, Niu G, Vilquin B, Pillard V, Rodrigues G L M P, Barrett N 2012 J. Phys. Chem. C 116 21802Google Scholar

    [11]

    Lee H, Kim T H, Patzner J J, Lu H, Lee J W, Zhou H, Chang W, Mahanthappa M K, Tsymbal E Y, Gruverman A, Eom C B 2016 Nano Lett. 16 2400Google Scholar

    [12]

    Song W, Salvador P A, Rohrer G S 2018 Surface Sci. 675 83Google Scholar

    [13]

    Shin J, Nascimento V B, Geneste G, Rundgren J, Plummer E W, Dkhil B, Kalinin S V, Baddorf A P 2009 Nano Lett. 9 3720Google Scholar

    [14]

    Pierre-Marie D, Bruno D, Céline D 2020 Phys. Rev. B 101 075410Google Scholar

    [15]

    Marra W C, Eisenberger P, Cho A Y 1979 J. Appl. Phys. 50 6927Google Scholar

    [16]

    Dosch H, Batterman B W, Wack D C 1986 Phys. Rev. Lett. 56 1144Google Scholar

    [17]

    Marti X, Ferrer P, Herrero-Albillos J, Narvaez J, Holy V, Barrett N, Alexe M, Catalan G 2011 Phys. Rev. Lett. 106 236101Google Scholar

    [18]

    Song C Y, Gao J C, Liu J C, Yang Y B, Tian C F, Hong J W, Weng H M, Zhang J X 2020 ACS Appl. Mater. Interfaces 12 4150Google Scholar

    [19]

    Barabanova E V, Ivanova A I, Malyshkina O V, Vinogradova Y K, Akbaeva G M 2021 Ferroelectrics 574 37Google Scholar

    [20]

    Li X L, Lu H B, Li M, Mai Z H, Kim H, Jia Q J 2008 Appl. Phys. Lett. 92 012902Google Scholar

    [21]

    Li X L, Lu H B, Li M, Mai Z H, Kim H 2008 J. Appl. Phys. 103 054109Google Scholar

    [22]

    Yang T Y, Zhang X M, Chen B, Guo H Z, Jin K J, Wu X S, Gao X Y, Li Z, Wang C, Li X L 2017 ACS Appl. Mater. Interfaces 9 5600Google Scholar

    [23]

    Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602Google Scholar

    [24]

    Kalinin S V, Bonnell D A 2001 Phys. Rev. B 63 125411Google Scholar

    [25]

    Tian Y, Wei L Y, Zhang Q H, Huang H B, Zhang Y L, Zhou H, Ma F J, Gu L, Meng S, Chen L Q, Nan C W, Zhang J X 2018 Nat. Commun. 9 3809Google Scholar

  • 图 1  GIXRD和XRR实验的衍射几何

    Fig. 1.  Diffraction geometry of GIXRD and XRR experiments

    图 2  BTO单晶的PFM和SEM图

    Fig. 2.  PFM and SEM images of BTO single crystal.

    图 3  BTO单晶的XRR图及拟合结果, 黑色方块为实验结果, 红线为拟合结果, 插图为电子密度随深度变化曲线 (a)未做任何处理; (b)表面滴加pH = 1的盐酸; (c)滴加去离子水; (d)滴加pH = 13的NaOH溶液

    Fig. 3.  XRR patterns and fitting results of BTO single crystal, black square represents experimental data, red curve represents fitting results. Inserts: electron density profile: (a) Without any treatment; (b) hydrochloric acid (pH = 1) on the surface; (c) deionized water on the surface; (d) NaOH solution (pH = 13) on the surface.

    图 4  BTO单晶面内晶格常数随入射角的变化

    Fig. 4.  In-plane lattice constants of BTO single crystal vary with incident angles.

    图 5  BTO单晶应变随深度变化图 (a)未做任何处理; (b)表面滴加pH = 1的盐酸; (c)滴加去离子水; (d)滴加pH = 13的NaOH溶液

    Fig. 5.  Strain variation with depth of BTO single crystal: (a) Without any treatment; (b) hydrochloric acid (pH = 1) on the surface; (c) deionized water on the surface; (d) NaOH solution (pH = 13) on the surface.

    图 6  低温下BTO单晶的GIXRD图

    Fig. 6.  GIXRD patterns of BTO single crystal at low temperatures.

  • [1]

    Chen L, Qian L M 2021 Friction 9 1Google Scholar

    [2]

    Iwahori K, Watanabe S, Kawai M, Kobayashi K, Yamada H, Matsushige K 2003 J. Appl. Phys. 93 3223Google Scholar

    [3]

    Geneste G, Dkhil B 2009 Phys. Rev. B 79 235420Google Scholar

    [4]

    Domingo N, Pach E, Cordero-Edwards K, Perez-Dieste V, Escudero C, Verdaguer A 2019 Phys. Chem. Chem. Phys. 21 4920Google Scholar

    [5]

    Li X, Wang B C, Zhang T Y, Su Y J 2014 J. Phys. Chem. C 118 15910Google Scholar

    [6]

    Efe I, Spaldin N A, Gattinoni C 2021 J. Chem. Phys. 154 024702Google Scholar

    [7]

    Chornik B, Fuenzalida V A, Grahmann C R, Labbe R 1997 Vacuum 48 161Google Scholar

    [8]

    Wegmann M, Watson L, Hendry A 2004 J. Am. Ceram. Soc. 87 371Google Scholar

    [9]

    Fuenzalida V M, Pilleux M E, Eisele I 1999 Vacuum 55 81Google Scholar

    [10]

    Wang J L, Gaillard F, Pancotti A, Gautier B, Niu G, Vilquin B, Pillard V, Rodrigues G L M P, Barrett N 2012 J. Phys. Chem. C 116 21802Google Scholar

    [11]

    Lee H, Kim T H, Patzner J J, Lu H, Lee J W, Zhou H, Chang W, Mahanthappa M K, Tsymbal E Y, Gruverman A, Eom C B 2016 Nano Lett. 16 2400Google Scholar

    [12]

    Song W, Salvador P A, Rohrer G S 2018 Surface Sci. 675 83Google Scholar

    [13]

    Shin J, Nascimento V B, Geneste G, Rundgren J, Plummer E W, Dkhil B, Kalinin S V, Baddorf A P 2009 Nano Lett. 9 3720Google Scholar

    [14]

    Pierre-Marie D, Bruno D, Céline D 2020 Phys. Rev. B 101 075410Google Scholar

    [15]

    Marra W C, Eisenberger P, Cho A Y 1979 J. Appl. Phys. 50 6927Google Scholar

    [16]

    Dosch H, Batterman B W, Wack D C 1986 Phys. Rev. Lett. 56 1144Google Scholar

    [17]

    Marti X, Ferrer P, Herrero-Albillos J, Narvaez J, Holy V, Barrett N, Alexe M, Catalan G 2011 Phys. Rev. Lett. 106 236101Google Scholar

    [18]

    Song C Y, Gao J C, Liu J C, Yang Y B, Tian C F, Hong J W, Weng H M, Zhang J X 2020 ACS Appl. Mater. Interfaces 12 4150Google Scholar

    [19]

    Barabanova E V, Ivanova A I, Malyshkina O V, Vinogradova Y K, Akbaeva G M 2021 Ferroelectrics 574 37Google Scholar

    [20]

    Li X L, Lu H B, Li M, Mai Z H, Kim H, Jia Q J 2008 Appl. Phys. Lett. 92 012902Google Scholar

    [21]

    Li X L, Lu H B, Li M, Mai Z H, Kim H 2008 J. Appl. Phys. 103 054109Google Scholar

    [22]

    Yang T Y, Zhang X M, Chen B, Guo H Z, Jin K J, Wu X S, Gao X Y, Li Z, Wang C, Li X L 2017 ACS Appl. Mater. Interfaces 9 5600Google Scholar

    [23]

    Lee D, Yoon A, Jang S Y, Yoon J G, Chung J S, Kim M, Scott J F, Noh T W 2011 Phys. Rev. Lett. 107 057602Google Scholar

    [24]

    Kalinin S V, Bonnell D A 2001 Phys. Rev. B 63 125411Google Scholar

    [25]

    Tian Y, Wei L Y, Zhang Q H, Huang H B, Zhang Y L, Zhou H, Ma F J, Gu L, Meng S, Chen L Q, Nan C W, Zhang J X 2018 Nat. Commun. 9 3809Google Scholar

  • [1] 袁国亮, 王琛皓, 唐文彬, 张睿, 陆旭兵. HfO2基铁电薄膜的结构、性能调控及典型器件应用. 物理学报, 2023, 72(9): 097703. doi: 10.7498/aps.72.20222221
    [2] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [3] 裴明辉, 田瑜, 张金星. 钙钛矿型铁电氧化物表面结构与功能的控制及其潜在应用. 物理学报, 2020, 69(21): 217709. doi: 10.7498/aps.69.20200884
    [4] 毕卫红, 陈俊刚, 张胜, 于腾飞, 张燕君, 侯旭涛. 基于分光光度法痕量重金属传感模型和影响因素的研究. 物理学报, 2017, 66(7): 074206. doi: 10.7498/aps.66.074206
    [5] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [6] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [7] 盛洁, 张国梁, 李玉强, 朱涛, 蒋中英. 荧光显微镜研究极端pH值诱导磷脂支撑膜的侧向再组织. 物理学报, 2014, 63(6): 068702. doi: 10.7498/aps.63.068702
    [8] 冉润欣, 范晓丽, 杨永良, 方小亮. 不同覆盖度下丙硫醇在Au(111)面吸附的理论研究. 物理学报, 2013, 62(22): 223101. doi: 10.7498/aps.62.223101
    [9] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析. 物理学报, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [10] 关荣华. 表面序电极化、挠曲电极化与向列液晶盒饱和点的双稳态. 物理学报, 2011, 60(1): 016105. doi: 10.7498/aps.60.016105
    [11] 房丽敏. SrTiO3(001)表面上Au和N原子相互作用的第一性原理研究. 物理学报, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [12] 汤富领, 陈功宝, 谢勇, 路文江. Al表面的"类液"结构及其自扩散通道. 物理学报, 2011, 60(6): 066801. doi: 10.7498/aps.60.066801
    [13] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [14] 肖 冰, 冯 晶, 陈敬超, 严继康, 甘国友. 金红石型TiO2(110)表面性质及STM形貌模拟. 物理学报, 2008, 57(6): 3769-3774. doi: 10.7498/aps.57.3769
    [15] 王飞鹏, 夏钟福, 邱勋林, 沈 军. 聚丙烯孔洞铁电驻极体膜的电极化及其电荷动态特性. 物理学报, 2006, 55(7): 3705-3710. doi: 10.7498/aps.55.3705
    [16] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [17] 戴佳钰, 张栋文, 袁建民. Xe原子吸附对GaAs(110)表面重构的影响. 物理学报, 2006, 55(11): 6073-6079. doi: 10.7498/aps.55.6073
    [18] 王昶清, 贾 瑜, 马丙现, 王松有, 秦 臻, 王 飞, 武乐可, 李新建. 不同温度下Si(001)表面各种亚稳态结构的分子动力学模拟. 物理学报, 2005, 54(9): 4313-4318. doi: 10.7498/aps.54.4313
    [19] 杨 春, 李言荣, 薛卫东, 陶佰万, 刘兴钊, 张 鹰, 黄 玮. α-Al2O3(0001)基片表面结构与能量研究. 物理学报, 2003, 52(9): 2268-2273. doi: 10.7498/aps.52.2268
    [20] 涂修文, 盖峥. Ge(112)-(4×1)-In表面重构的原子结构. 物理学报, 2001, 50(12): 2439-2445. doi: 10.7498/aps.50.2439
计量
  • 文章访问数:  1846
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-12
  • 修回日期:  2024-03-26
  • 上网日期:  2024-03-30
  • 刊出日期:  2024-05-20

/

返回文章
返回