搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同覆盖度下丙硫醇在Au(111)面吸附的理论研究

冉润欣 范晓丽 杨永良 方小亮

引用本文:
Citation:

不同覆盖度下丙硫醇在Au(111)面吸附的理论研究

冉润欣, 范晓丽, 杨永良, 方小亮

Theoretical study of adsorption of propanethiol on Au(111) surface at different coverages

Ran Run-Xin, Fan Xiao-Li, Yang Yong-Liang, Fang Xiao-Liang
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理方法研究了丙烷硫醇 (C3H7SH)在Au(111)面五种覆盖度(1/16, 2/16, 3/16, 4/16, 1/3) 下的未解离和解离吸附的结构、能量和吸附性质. 发现丙烷硫醇的倾斜角和吸附能均受覆盖度影响, 计算结果显示丙烷硫醇的倾斜角随着覆盖度的增大减小了6°–10°, 吸附能随覆盖度的增大减小了0.21 eV. 特别针对饱和覆盖度, 研究了三种可能的表面结构: (2√3×2√3 ight)R30°, 2√3×3和(3×3). 发现S–H键未解离时三种表面结构的吸附构型和吸附能基本一致; S–H键解离后, (2√3×2√3 ight)R30°和2√3×3结构的吸附能比以(3×3)结构的吸附能约高0.05–0.07 eV, 说明C3H7S在Au(111)面吸附时, 倾向于形成(2√3×2√3 ight)R30°和2√3×3结构. 此外, 采用DFT-D2方法对饱和覆盖度下C3H7SH分子在Au(111)面的吸附进行了范德华修正, 结果显示分子间相互作用使吸附物和Au表面的距离减小, 该相互作用对吸附能的修正值为0.53 eV, 修正后结果与实验结果接近.
    By applying the first-principles method based on the density functional theory, we study the non-dissociative adsorption of C3H7SH molecule and the dissociated adsorption of C3H7S group both on Au(111) surface at five kinds of coverages (1/16, 2/16, 3/16, 4/16, 1/3). It is found that both the tilt angle and the adsorption energy are affected by coverage. When the coverage increases to 1/3, the tilt angle of the molecular axis reduces 6°–10°, and the adsorption energy reduces 0.21 eV. At a saturated coverage, the absorption properties are especially studied for three Au(111) surface structures of (3×3), (2√3×2√3 ight)R30° and 2√3×3. For the non-dissociative adsorption of C3H7SH at the saturated coverage, both the adsorption configurations and adsorption energies are almost the same for the three surface structures. But for the dissociated C3H7S group, the adsorption energies of surface structures of (2√3×2√3 ight)R30° and 2√3×3 are about 0.05-0.07 eV higher than that of the (3×3) surface structure. Effects of the van der Waals interaction on the adsorption configuration and energy are investigated by the DFT-D2 method. For the non-dissociative adsorption of C3H7SH/Au(111) system at a saturated coverage of 1/3, the van der Waals interaction reduces the interaction distance between the adsorbate and the substrate, and corrects the adsorption energy by 0.53 eV, which is close to experimental result.
    • 基金项目: 国家自然科学基金(批准号: 20903075, 21273172)和高等学校学科创新引智计划(111) (批准号: B08040)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 20903075, 21273172) and the Program of Introducing Talents of Discipline to Universities, China (111 Project) (Grant No. B08040).
    [1]

    Ulman A 1996 Chem. Rev. 96 1533

    [2]

    Schreiber F 2000 Prog. Surf. Sci. 65 151

    [3]

    Schreiber F 2004 J. Phys.: Condens. Matter 16 R881

    [4]

    Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M 2005 Chem. Rev. 105 1103

    [5]

    Nenchev G, Diaconescu B, Hagelberg F, Pohl K 2009 Phys. Rev. B 80 081401

    [6]

    Nuzzo R G, Allara D L 1983 J. Am. Chem. Soc. 105 4481

    [7]

    Yang S R, Ren S L, Zhang J Y, Zhang X S 2001 Chem. J. Chin. Univ. 22 470 (in Chinese) [杨生荣, 任嗣利, 张俊彦, 张绪寿 2001 高等学校化学学报 22 470]

    [8]

    Schreiber F, Eberhardt A, Leung T Y B, Schwartz P, Wetterer S M, Lavrich D J, Berman L, Fenter P, Eisenberger P, Scoles G 1998 Phys. Rev. B 57 12476

    [9]

    Vericat C, Vela M E, Benitez G, Carro P, Salvarezza R C 2010 Chem. Soc. Rev. 39 1805

    [10]

    Xu S, Cruchon S J N, Garno J C, Liu G Y, Jennings G K, Yong T H, Laibinis P E 1998 J. Chem. Phys. 108 5002

    [11]

    Poirier G E, Pylant E D 1996 Science 272 1145

    [12]

    Yamada R, Uosaki K 1998 Langmuir 14 855

    [13]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 物理学报 62 186301]

    [14]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 067302

    [15]

    Niu W X, Zhang H 2012 Chin. Phys. B 21 026802

    [16]

    Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101

    [17]

    Yourdshahyan Y, Zhang H, Rappe A M 2001 Phys. Rev. B 63 081405

    [18]

    Ran R X, Fan X L, Liu Y, Yang Y L 2013 Acta Chim. Sin. 71 829 (in Chinese) [冉润欣, 范晓丽, 刘燕, 杨永良 2013 化学学报 71 829]

    [19]

    Luque N B, Santos E, Andres J, Tielens F 2011 Langmuir 27 14514

    [20]

    Tielens F, Santos E 2010 J. Phys. Chem. C 114 9444

    [21]

    Carla A A, Earl L S, Marc D P 1992 J. Am. Chem. Soc. 114 1222

    [22]

    Touzov I, Gorman C B 1997 J. Phys. Chem. B 101 5263

    [23]

    Li B, Bao S N, Cao P L, Zhuang Y Y 2003 Acta Phys. Sin. 52 202 (in Chinese) [李波, 鲍世宁, 曹培林, 庄友谊 2003 物理学报 52 202]

    [24]

    Yourdshahyan Y, Rappe A M 2002 J. Chem. Phys. 117 825

    [25]

    Grimme S 2004 J. Comput. Chem. 25 1463

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [28]

    Dion M, Rydberg H, Schroder E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864

    [30]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [31]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [32]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [33]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Nara J, Higai S, Morikawa Y, Ohno T 2004 J. Chem. Phys. 120 6705

    [39]

    Fan X L, Chi Q, Liu C, Lau W M 2012 J. Phys. Chem. C 116 1002

    [40]

    Min J X, Fan X L, Cheng Q Z, Chi Q 2011 Acta Chim. Sin. 69 789 (in Chinese) [闵家祥, 范晓丽, 程千忠, 池琼 2011 化学学报 69 789]

    [41]

    Lustemberg P G, Martiarena M L, Martínez A E, Busnengo H F 2008 Langmuir 24 3274

    [42]

    Wang J G, Selloni A 2007 J. Phys. Chem. C 111 12149

    [43]

    Carro P, Pensa E, Vericat C, Salvarezza R C 2013 J. Phys. Chem. C 117 2160

    [44]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福合, 周云生 2010 物理学报 59 7278]

    [45]

    Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [46]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张建敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [47]

    Lavrich D J, Wetterer S M, Bernasek S L, Scoles G 1998 J. Phys. Chem. B 102 3456

  • [1]

    Ulman A 1996 Chem. Rev. 96 1533

    [2]

    Schreiber F 2000 Prog. Surf. Sci. 65 151

    [3]

    Schreiber F 2004 J. Phys.: Condens. Matter 16 R881

    [4]

    Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M 2005 Chem. Rev. 105 1103

    [5]

    Nenchev G, Diaconescu B, Hagelberg F, Pohl K 2009 Phys. Rev. B 80 081401

    [6]

    Nuzzo R G, Allara D L 1983 J. Am. Chem. Soc. 105 4481

    [7]

    Yang S R, Ren S L, Zhang J Y, Zhang X S 2001 Chem. J. Chin. Univ. 22 470 (in Chinese) [杨生荣, 任嗣利, 张俊彦, 张绪寿 2001 高等学校化学学报 22 470]

    [8]

    Schreiber F, Eberhardt A, Leung T Y B, Schwartz P, Wetterer S M, Lavrich D J, Berman L, Fenter P, Eisenberger P, Scoles G 1998 Phys. Rev. B 57 12476

    [9]

    Vericat C, Vela M E, Benitez G, Carro P, Salvarezza R C 2010 Chem. Soc. Rev. 39 1805

    [10]

    Xu S, Cruchon S J N, Garno J C, Liu G Y, Jennings G K, Yong T H, Laibinis P E 1998 J. Chem. Phys. 108 5002

    [11]

    Poirier G E, Pylant E D 1996 Science 272 1145

    [12]

    Yamada R, Uosaki K 1998 Langmuir 14 855

    [13]

    Wu T Q, Wang X Y, Jiao Z W, Luo H L, Zhu P 2013 Acta Phys. Sin. 62 186301 (in Chinese) [吴太权, 王新燕, 焦志伟, 罗宏雷, 朱萍 2013 物理学报 62 186301]

    [14]

    Li M, Zhang J Y, Zhang Y, Wang T M 2012 Chin. Phys. B 21 067302

    [15]

    Niu W X, Zhang H 2012 Chin. Phys. B 21 026802

    [16]

    Hu M, Wang W D, Zeng P, Zeng J, Qin Y X 2012 Chin. Phys. B 21 023101

    [17]

    Yourdshahyan Y, Zhang H, Rappe A M 2001 Phys. Rev. B 63 081405

    [18]

    Ran R X, Fan X L, Liu Y, Yang Y L 2013 Acta Chim. Sin. 71 829 (in Chinese) [冉润欣, 范晓丽, 刘燕, 杨永良 2013 化学学报 71 829]

    [19]

    Luque N B, Santos E, Andres J, Tielens F 2011 Langmuir 27 14514

    [20]

    Tielens F, Santos E 2010 J. Phys. Chem. C 114 9444

    [21]

    Carla A A, Earl L S, Marc D P 1992 J. Am. Chem. Soc. 114 1222

    [22]

    Touzov I, Gorman C B 1997 J. Phys. Chem. B 101 5263

    [23]

    Li B, Bao S N, Cao P L, Zhuang Y Y 2003 Acta Phys. Sin. 52 202 (in Chinese) [李波, 鲍世宁, 曹培林, 庄友谊 2003 物理学报 52 202]

    [24]

    Yourdshahyan Y, Rappe A M 2002 J. Chem. Phys. 117 825

    [25]

    Grimme S 2004 J. Comput. Chem. 25 1463

    [26]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [27]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [28]

    Dion M, Rydberg H, Schroder E, Langreth D C, Lundqvist B I 2004 Phys. Rev. Lett. 92 246401

    [29]

    Hohenberg P, Kohn W 1964 Phys. Rev. B 136 B864

    [30]

    Kohn W, Sham L J 1965 Phys. Rev. A 140 1133

    [31]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [32]

    Kresse G, Furthmller J 1996 Comput. Mater. Sci. 6 15

    [33]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [34]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251

    [35]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [36]

    Blochl P E 1994 Phys. Rev. B 50 17953

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Nara J, Higai S, Morikawa Y, Ohno T 2004 J. Chem. Phys. 120 6705

    [39]

    Fan X L, Chi Q, Liu C, Lau W M 2012 J. Phys. Chem. C 116 1002

    [40]

    Min J X, Fan X L, Cheng Q Z, Chi Q 2011 Acta Chim. Sin. 69 789 (in Chinese) [闵家祥, 范晓丽, 程千忠, 池琼 2011 化学学报 69 789]

    [41]

    Lustemberg P G, Martiarena M L, Martínez A E, Busnengo H F 2008 Langmuir 24 3274

    [42]

    Wang J G, Selloni A 2007 J. Phys. Chem. C 111 12149

    [43]

    Carro P, Pensa E, Vericat C, Salvarezza R C 2013 J. Phys. Chem. C 117 2160

    [44]

    Wu X X, Wang Q E, Wang F H, Zhou Y S 2010 Acta Phys. Sin. 59 7278 (in Chinese) [吴小霞, 王乾恩, 王福合, 周云生 2010 物理学报 59 7278]

    [45]

    Zeng Z H, Deng H Q, Li W X, Hu W Y 2006 Acta Phys. Sin. 55 3157 (in Chinese) [曾振华, 邓辉球, 李微雪, 胡望宇 2006 物理学报 55 3157]

    [46]

    Xu G G, Wu Q Y, Zhang J M, Chen Z G, Huang Z G 2009 Acta Phys. Sin. 58 1924 (in Chinese) [许桂贵, 吴青云, 张建敏, 陈志高, 黄志高 2009 物理学报 58 1924]

    [47]

    Lavrich D J, Wetterer S M, Bernasek S L, Scoles G 1998 J. Phys. Chem. B 102 3456

  • [1] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [2] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [3] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [4] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [5] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [6] 李国旗, 张小超, 丁光月, 樊彩梅, 梁镇海, 韩培德. BiOCl{001}表面原子与电子结构的第一性原理研究. 物理学报, 2013, 62(12): 127301. doi: 10.7498/aps.62.127301
    [7] 梁培, 刘阳, 王乐, 吴珂, 董前民, 李晓艳. 表面悬挂键导致硅纳米线掺杂失效机理的第一性原理研究. 物理学报, 2012, 61(15): 153102. doi: 10.7498/aps.61.153102
    [8] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究 . 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [9] 舒瑜, 张研, 张建民. Cu 表面性质的第一性原理分析. 物理学报, 2012, 61(1): 016108. doi: 10.7498/aps.61.016108
    [10] 房丽敏. SrTiO3(001)表面上Au和N原子相互作用的第一性原理研究. 物理学报, 2011, 60(5): 056801. doi: 10.7498/aps.60.056801
    [11] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [12] 吴小霞, 王乾恩, 王福合, 周云松. Cl原子在γ-TiAl(111)表面吸附的第一性原理研究. 物理学报, 2010, 59(10): 7278-7284. doi: 10.7498/aps.59.7278
    [13] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [14] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [15] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [16] 张金奎, 邓胜华, 金 慧, 刘悦林. ZnO电子结构和p型传导特性的第一性原理研究. 物理学报, 2007, 56(9): 5371-5375. doi: 10.7498/aps.56.5371
    [17] 卿 涛, 邵天敏, 温诗铸. 材料表面之间黏附过程分析. 物理学报, 2007, 56(3): 1555-1562. doi: 10.7498/aps.56.1555
    [18] 姚红英, 顾 晓, 季 敏, 张笛儿, 龚新高. SiO2-羟基表面上金属原子的第一性原理研究. 物理学报, 2006, 55(11): 6042-6046. doi: 10.7498/aps.55.6042
    [19] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  3192
  • PDF下载量:  1180
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-27
  • 修回日期:  2013-08-28
  • 刊出日期:  2013-11-05

不同覆盖度下丙硫醇在Au(111)面吸附的理论研究

  • 1. 西北工业大学, 凝固技术国家重点实验室, 西安 710072
    基金项目: 国家自然科学基金(批准号: 20903075, 21273172)和高等学校学科创新引智计划(111) (批准号: B08040)资助的课题.

摘要: 采用基于密度泛函理论的第一性原理方法研究了丙烷硫醇 (C3H7SH)在Au(111)面五种覆盖度(1/16, 2/16, 3/16, 4/16, 1/3) 下的未解离和解离吸附的结构、能量和吸附性质. 发现丙烷硫醇的倾斜角和吸附能均受覆盖度影响, 计算结果显示丙烷硫醇的倾斜角随着覆盖度的增大减小了6°–10°, 吸附能随覆盖度的增大减小了0.21 eV. 特别针对饱和覆盖度, 研究了三种可能的表面结构: (2√3×2√3 ight)R30°, 2√3×3和(3×3). 发现S–H键未解离时三种表面结构的吸附构型和吸附能基本一致; S–H键解离后, (2√3×2√3 ight)R30°和2√3×3结构的吸附能比以(3×3)结构的吸附能约高0.05–0.07 eV, 说明C3H7S在Au(111)面吸附时, 倾向于形成(2√3×2√3 ight)R30°和2√3×3结构. 此外, 采用DFT-D2方法对饱和覆盖度下C3H7SH分子在Au(111)面的吸附进行了范德华修正, 结果显示分子间相互作用使吸附物和Au表面的距离减小, 该相互作用对吸附能的修正值为0.53 eV, 修正后结果与实验结果接近.

English Abstract

参考文献 (47)

目录

    /

    返回文章
    返回