搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种能够改善鲁棒性的新型4H-SiC ESD防护器件

常帅军 马海伦 李浩 欧树基 郭建飞 钟鸣浩 刘莉

引用本文:
Citation:

一种能够改善鲁棒性的新型4H-SiC ESD防护器件

常帅军, 马海伦, 李浩, 欧树基, 郭建飞, 钟鸣浩, 刘莉

A novel 4H-SiC ESD protection device with improved robustness

Chang Shuai-Jun, Ma Hai-Lun, Li Hao, Ou Shu-Ji, Guo Jian-Fei, Zhong Ming-Hao, Liu Li
PDF
HTML
导出引用
  • 2020年, 韩国学者以4H-SiC材料为基底提出了一种新型ESD防护器件HHFGNMOS(high holding voltage floating gate NMOSFET), 此结构显著改善了4H-SiC GGNMOS(grounded-gate NMOSFET)因SiC材料特性导致的剧烈回滞现象. 但是在HHFGNMOS结构中仍存在电流分布过于密集的问题. 在本文中首次将comb-like结构用于HHFGNMOS防护器件, 将器件的漏区底部进行梳型改造, 充分利用电流集边效应使电流分布变得均匀, 并通过TCAD仿真给出了Comb-like结构的设计变量对结构性能的影响. 基于4H-SiC的GGNMOS, HHFGNMOS, Comb-like HHFGNMOS在TLP脉冲下的瞬态仿真结果显示, comb-like HHFGNMOS的二次失效电流IT2相比GGNMOS以及HHFGNMOS由17 A提高到22 A, 提高了29%; 此外comb-like HHFGNMOS回滞相比GGNMOS及HHFGNMOS减小了55.2%和5%. 因此在面积不变、工艺相兼容的情况下较大程度改善了器件的鲁棒性, 减小了回滞效应.
    In 2020, Korean scholars proposed a new electrotatic discharge (ESD) protection device HHFGNMOS(high holding voltage floating gate nMOSFET) based on 4H-SiC material, which can significantly improve the severe snapback phenomenon of 4H-SiC GGNMOS due to the characteristics of SiC material. However, there still exists a problem that the current distribution is too dense in the HHFGNMOS structure. In this work, the comb-like structure is used for the HHFGNMOS protection device for the first time. The bottom of the drain region of the device is comb transformed, and the current distribution is made uniform by making full use of the current edge effect. The influence of design variables of comb-like structure on structure performance is given by TCAD simulation. The transient simulation results of GGNMOS, HHFGNMOS and comb-like HHFGNMOS based on 4H-SiC under TLP pulse show that the secondary failure current IT2 of comb-like HHFGNMOS increases from 17 to 22 A i.e. by 29%, compared with that of GGNMOS and HHFGNMOS. In addition, the comb-like HHFGNMOS snapback is reduced by 55.2% and 5% compared with GGNMOS snapback and HHFGNMOS snapback, respectively. Therefore, the robustness of the device is greatly improved and the snapback effect is reduced under the condition of constant area and compatible process.
      通信作者: 刘莉, liuli@mail.xidian.edu.cn
    • 基金项目: 陕西省重点研发计划(批准号: B020250023)资助的课题.
      Corresponding author: Liu Li, liuli@mail.xidian.edu.cn
    • Funds: Project supported by the Key R & D Projects in Shaanxi Province, China (Grant No. B020250023).
    [1]

    Ameraskera A, Duvvury C 2002 ESD in silicon integrated circuits (2nd Ed.) (New York: John Wiley & Sons) pp56–341

    [2]

    Wei J, Liu S, Zhang X, Sun W, Huang A Q 2020 IEEE Trans. Power Electron 35 11299Google Scholar

    [3]

    Do K I, Won J I, Koo Y S 2020 IEEE Trans. Power Electron 36 4921Google Scholar

    [4]

    Do K I, Lee B S, Koo Y S 2018 IEEE Electron Device Lett 40 283Google Scholar

    [5]

    Duvvury C, Diaz C H 1992 Reliability Physics Symposium 1992 30th Annual Proceedings., International San Diego, CA, USA, March 31–April 2, 1992 141

    [6]

    Ker M D, Chen T Y 2003 IEEE Trans. Electron. Dev. 50 1050Google Scholar

    [7]

    Won J I, Jung J W, Yang I S, Koo Y S 2011 Electron. Lett. 47 1072Google Scholar

    [8]

    Lin H S, Shi L C 2002 Chin. J. Electron. 25 209

    [9]

    Wang A Z H 2002 On-Chip ESD Protection for Integrated Circuits: An IC Design Perspective (Kluwer Academic Publishers) pp24–26

  • 图 1  本文中所涉及到的4H-SiC ESD防护器件结构 (a) 4H-SiC GGNMOS (grounded-gate NMOS)结构; (b) 4H-SiC HHFGNMOS (high holding voltage floating gate NMOSFET)结构; (c) comb-like 4H-SiC HHFGNMOS结构; (d) comb-like 4H-SiC HHFGNMOS俯视图

    Fig. 1.  4H-SiC ESD protection device structure involved in this paper: (a) 4H-SiC GGNMOS (grounded gate NMOS) structure; (b) 4H-SiC HHFGNMOS (high holding voltage floating gate nMOSFET) structure; (c) comb-like 4H-SiC HHFGNMOS structure; (d) comb-like 4H-SiC HHFGNMOS top view.

    图 2  基于4H-SiC的GGNMOS, HHFGNMOS, Comb-Like HHFGNMOS三种结构的TLP I-V仿真特性曲线

    Fig. 2.  TLP I-V simulation characteristic curves of GGNMOS, HHFGNMOS and comb-like HHFGNMOS based on 4H-SiC.

    图 3  4H-SiC HHFGNMOS和comb-like 4H-SiC HHFGNMOS漏区电流密度分布 (a) 4H-SiC HHFGNMOS漏区电流密度分布; (b) comb-like 4H-SiC HHFGNMOS漏区电流密度分布(W = 1 μm, S = 1 μm, D = 0.1 μm); (c) 电流密度梯度图

    Fig. 3.  Drain current density distribution of 4H-SiC HHFGNMOS and comb-like 4H-SiC HHFGNMOS: (a) Drain current density distribution of 4H-SiC HHFGNMOS; (b) drain current density distribution of comb-like 4H-SiC HHFGNMOS (W = 1 μm, S = 1 μm, D = 0.1 μm).

    图 4  Comb-Like 4H-SiC HHFGNMOS与 4H-SiC HHFGNMOS相同应力下晶格温度曲线

    Fig. 4.  Lattice temperature curve of Comb-like 4H-SiC HHFGNMOS and 4H-SiC HHFGNMOS under the same stress.

    图 5  Comb-like 4H-SiC HFGNMOS结构不同设计变量时漏区电流密度分布 (a) W = 1 μm, S = 1 μm, D = 0.05 μm; (b) W = 1 μm, S = 1 μm, D = 0.15 μm; (c) W = 1 μm, S = 0.5 μm, D = 0.1 μm; (d) W = 1 μm, S = 2 μm, D = 0.1 μm; (e) W = 0.5 μm, S = 1 μm, D = 0.1 μm; (f) W = 2 μm, S = 1 μm, D = 0.1 μm

    Fig. 5.  Drain current density distribution of Comb-like 4H-SiC HHFGNMOS structure under different design variables: (a) W = 1 μm, S = 1 μm, D = 0.05 μm; (b) W = 1 μm, S = 1 μm, D = 0.15 μm; (c) W = 1 μm, S = 0.5 μm, D = 0.1 μm; (d) W = 1 μm, S = 2 μm, D = 0.1 μm; (e) W = 0.5 μm, S = 1 μm, D = 0.1 μm; (f) W = 2 μm, S = 1 μm, D = 0.1 μm.

    表 1  comb-like 4H-SiC HHFGNMOS结构参数

    Table 1.  structural parameters of comb-like 4H-SiC HHFGNMOS.

    LayerJunction depth/μmDoping concentration/cm-3
    N+Implant0.22.5 × 1019
    P+Implant0.22 × 1019
    P_Body0.75 × 1018
    N_Epi135 × 1015
    下载: 导出CSV
  • [1]

    Ameraskera A, Duvvury C 2002 ESD in silicon integrated circuits (2nd Ed.) (New York: John Wiley & Sons) pp56–341

    [2]

    Wei J, Liu S, Zhang X, Sun W, Huang A Q 2020 IEEE Trans. Power Electron 35 11299Google Scholar

    [3]

    Do K I, Won J I, Koo Y S 2020 IEEE Trans. Power Electron 36 4921Google Scholar

    [4]

    Do K I, Lee B S, Koo Y S 2018 IEEE Electron Device Lett 40 283Google Scholar

    [5]

    Duvvury C, Diaz C H 1992 Reliability Physics Symposium 1992 30th Annual Proceedings., International San Diego, CA, USA, March 31–April 2, 1992 141

    [6]

    Ker M D, Chen T Y 2003 IEEE Trans. Electron. Dev. 50 1050Google Scholar

    [7]

    Won J I, Jung J W, Yang I S, Koo Y S 2011 Electron. Lett. 47 1072Google Scholar

    [8]

    Lin H S, Shi L C 2002 Chin. J. Electron. 25 209

    [9]

    Wang A Z H 2002 On-Chip ESD Protection for Integrated Circuits: An IC Design Perspective (Kluwer Academic Publishers) pp24–26

  • [1] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道. 物理学报, 2022, 71(3): 035205. doi: 10.7498/aps.71.20211495
    [2] 刘永棠, 盛亮, 李阳, 张金海, 欧阳晓平. 反场构型平面薄膜电爆炸等离子体电流通道研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211495
    [3] 李传纲, 鞠涛, 张立国, 李杨, 张璇, 秦娟, 张宝顺, 张泽洪. Ti, N共掺杂4H-SiC复合增强缓冲层生长及其对PiN二极管正向性能稳定性的改善. 物理学报, 2021, 70(3): 037102. doi: 10.7498/aps.70.20200921
    [4] 杜园园, 张春雷, 曹学蕾. 基于4H-SiC肖特基势垒二极管的射线探测器. 物理学报, 2016, 65(20): 207301. doi: 10.7498/aps.65.207301
    [5] 贾仁需, 刘思成, 许翰迪, 陈峥涛, 汤晓燕, 杨霏, 钮应喜. 4H-SiC同质外延生长Grove模型研究. 物理学报, 2014, 63(3): 037102. doi: 10.7498/aps.63.037102
    [6] 程萍, 张玉明, 张义门. 退火对非故意掺杂4H-SiC外延材料386 nm和388 nm发射峰的影响. 物理学报, 2011, 60(1): 017103. doi: 10.7498/aps.60.017103
    [7] 苗瑞霞, 张玉明, 汤晓燕, 张义门. 4H-SiC中基面位错发光特性研究. 物理学报, 2011, 60(3): 037808. doi: 10.7498/aps.60.037808
    [8] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [9] 程萍, 张玉明, 张义门, 王悦湖, 郭辉. 非故意掺杂4H-SiC外延材料本征缺陷的热稳定性. 物理学报, 2010, 59(5): 3542-3546. doi: 10.7498/aps.59.3542
    [10] 程萍, 张玉明, 郭辉, 张义门, 廖宇龙. LPCVD法制备的高纯半绝缘4H-SiC晶体ESR谱特性. 物理学报, 2009, 58(6): 4214-4218. doi: 10.7498/aps.58.4214
    [11] 贾仁需, 张义门, 张玉明, 郭 辉, 栾苏珍. 4H-SiC同质外延的绿带发光与缺陷的关系. 物理学报, 2008, 57(7): 4456-4458. doi: 10.7498/aps.57.4456
    [12] 吕红亮, 张义门, 张玉明, 车 勇, 王悦湖, 陈 亮. 4H-SiC 射频MESFET中陷阱参数的提取方法. 物理学报, 2008, 57(5): 2871-2874. doi: 10.7498/aps.57.2871
    [13] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [14] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [15] 林洪峰, 谢二庆, 马紫微, 张 军, 彭爱华, 贺德衍. 射频溅射法制备3C-SiC和4H-SiC薄膜. 物理学报, 2004, 53(8): 2780-2785. doi: 10.7498/aps.53.2780
    [16] 吕红亮, 张义门, 张玉明. 4H-SiC pn结型二极管击穿特性中隧穿效应影响的模拟研究. 物理学报, 2003, 52(10): 2541-2546. doi: 10.7498/aps.52.2541
    [17] 张洪涛, 徐重阳, 邹雪城, 王长安, 赵伯芳, 周雪梅, 曾祥斌. 4H-SiC纳米薄膜的微结构及其光电性质研究. 物理学报, 2002, 51(2): 304-309. doi: 10.7498/aps.51.304
    [18] 杨林安, 张义门, 龚仁喜, 张玉明. 4H-SiC射频功率MESFET的自热效应分析. 物理学报, 2002, 51(1): 148-152. doi: 10.7498/aps.51.148
    [19] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [20] 孙俊生, 武传松. 熔池表面形状对电弧电流密度分布的影响. 物理学报, 2000, 49(12): 2427-2432. doi: 10.7498/aps.49.2427
计量
  • 文章访问数:  4107
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-04
  • 修回日期:  2022-05-30
  • 上网日期:  2022-10-12
  • 刊出日期:  2022-10-05

/

返回文章
返回