搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaN基薄膜半导体材料不同非线性效应的竞争关系

廖健宏 曾群 袁茂辉

引用本文:
Citation:

GaN基薄膜半导体材料不同非线性效应的竞争关系

廖健宏, 曾群, 袁茂辉

Competition between different nonlinear optical effects of GaN-based thin-film semiconductors

Liao Jian-Hong, Zeng Qun, Yuan Mao-Hui
PDF
导出引用
  • 采用金属有机化合物化学气相沉积方法生长了未掺杂GaN,p型Mg掺杂GaN,InGaN/GaN多量子阱等薄膜半导体材料,研究了其在800 nm飞秒激光激发下的非线性光学性质.实验结果表明,在800 nm飞秒激光激发下,多光子荧光、二次谐波等非线性光学信号之间存在着竞争关系,反映出不同非线性光学信号对激发光的能量分配存在着竞争,并通过其非线性光学信号强度与激发强度之间的依赖关系进行了验证.同时,本文对其竞争机理进行了初步探究.
    In recent years, new optoelectronic materials such as GaN-based thin-film semiconductors and rare-earth-ion doped luminescent materials have aroused the interest of many researchers. The GaN-based semiconductors have wide and direct energy gaps which could be adjusted to cover the whole visible light spectrum region by doping. They have been successfully applied to fabrications of blue lasers and light emitting diodes. The rare-earth-ion doped luminescent materials have exhibited many advantages in luminescent properties such as intense narrow-band emissions, high conversion efficiency, wide emission peaks ranging from ultraviolet to near infrared, long lifetime ranging from nanoseconds to milliseconds, and good thermal stability. They have been widely applied in the fields of illumination, imaging, display, and medical radiology. So far, the studies on GaN-based thin-film semiconductors and rare-earth-ion doped luminescent materials focus mainly on their growth and linear optical properties. In contrast, the investigations of the nonlinear optical properties of these materials, which have potential applications in many fields, are still lacking. In this paper, GaN-based thin-film semiconductors, such as undoped GaN, Mg-doped GaN and InGaN/GaN multiple quantum wells, are successfully grown by metal-organic chemical vapor deposition. Their nonlinear optical properties are studied by using an 800-nm femtosecond laser light. The nonlinear optical properties are different when the laser light is focused on different positions of the samples. The competition between different nonlinear optical effects reflect directly the competition in stimulated luminescence energy. And particularly, it is closely related to the density of energy states, stimulated luminescence energy, and the sample band gap energy difference. In addition, the competition between different nonlinear optical effects, such as multiphoton-induced luminescence and second harmonic generation, is clearly revealed and is manifested in the dependence of the nonlinear optical signal on excitation intensity in this investigation. And also, the competition mechanism is preliminary studied in this paper.
    [1]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [2]

    Yuan M H, Li H, Zeng J H, Fan H H, Lan S, Li S T 2014 Opt. Lett. 39 3555

    [3]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [4]

    Passeri D, Larciprete M C, Belardini A, Paoloni S, Passaseo A, Sibilia C, Michelotti F 2004 Appl. Phys. B 79 611

    [5]

    Yang A L, Song H P, Wei H Y, Liu X L, Wang J, Lv X Q, Jin P, Yang S Y, Zhu Q S, Wang Z G 2009 Appl. Phys. Lett. 94 163301

    [6]

    Limpijumnong S, van de Walle C G 2004 Phys. Rev. B 69 035207

    [7]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691

    [8]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [9]

    Liu R, Bell A, Ponce F A, Chen C Q, Yang J W, Khan M A 2005 Appl. Phys. Lett. 86 021908

    [10]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [11]

    Pawlowski R P, Theodoropoulos C, Salinger A G, Mountziaris T J, Moffat H K, Shadid J N, Thrush E J 2000 J. Cryst. Growth 221 622

    [12]

    Lo F Y, Huang C D, Chou K C, Guo J Y, Liu H L, Ney V, Ney A, Shvarkov S, Pezzagna S, Reuter D, Chia C T, Chern M Y, Wieck A D, Massies J 2014 J. Appl. Phys. 116 043909

    [13]

    Schneck J R, Dimakis E, Woodward J, Erramilli S, Moustakas T D, Ziegler L D 2012 Appl. Phys. Lett. 101 142102

    [14]

    Heikkilä O, Oksanen J, Tulkki J 2013 Appl. Phys. Lett. 102 111111

    [15]

    Vispute R D, Talyansky V, Trajanovic Z 1997 Appl. Phys. Lett. 70 2735

    [16]

    Li G C, Zhang C Y, Deng H D, Liu G Y, Lan S, Qian Q, Gopal A V 2013 Opt. Express 21 6020

    [17]

    Yang H, Xu S J, Li Q, Zhang J 2006 Appl. Phys. Lett. 88 161113

    [18]

    Saidi I, Bouzaïene L, Maaref H, Mejri H 2007 J. Appl. Phys. 101 094506

    [19]

    Fang Y, Wu X Z, Ye F, Chu X Y, Li Z G, Yang J Y, Song Y L 2013 J. Appl. Phys. 114 103507

    [20]

    Kravetsky I V, Tiginyanu I M, Hildebrandt R, Marowsky G, Pavlidis D, Eisenbach A, Hartnagel H L 2000 Appl. Phys. Lett. 76 810

    [21]

    Dai J, Dai Q F, Zeng J H, Lan S, Wan X, Tie S L 2013 IEEE J. Quantum Electron. 49 903

    [22]

    Dai J, Zeng J H, Lan S, Wan X, Tie S L 2013 Opt. Express 21 10025

  • [1]

    Vurgaftman I, Meyer J R 2003 J. Appl. Phys. 94 3675

    [2]

    Yuan M H, Li H, Zeng J H, Fan H H, Lan S, Li S T 2014 Opt. Lett. 39 3555

    [3]

    Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815

    [4]

    Passeri D, Larciprete M C, Belardini A, Paoloni S, Passaseo A, Sibilia C, Michelotti F 2004 Appl. Phys. B 79 611

    [5]

    Yang A L, Song H P, Wei H Y, Liu X L, Wang J, Lv X Q, Jin P, Yang S Y, Zhu Q S, Wang Z G 2009 Appl. Phys. Lett. 94 163301

    [6]

    Limpijumnong S, van de Walle C G 2004 Phys. Rev. B 69 035207

    [7]

    Cherns D, Henley S J, Ponce F A 2001 Appl. Phys. Lett. 78 2691

    [8]

    Lu T, Li S, Liu C, Zhang K, Xu Y, Tong J, Wu L, Wang H, Yang X, Yin Y, Xiao G, Zhou Y 2012 Appl. Phys. Lett. 100 141106

    [9]

    Liu R, Bell A, Ponce F A, Chen C Q, Yang J W, Khan M A 2005 Appl. Phys. Lett. 86 021908

    [10]

    Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301

    [11]

    Pawlowski R P, Theodoropoulos C, Salinger A G, Mountziaris T J, Moffat H K, Shadid J N, Thrush E J 2000 J. Cryst. Growth 221 622

    [12]

    Lo F Y, Huang C D, Chou K C, Guo J Y, Liu H L, Ney V, Ney A, Shvarkov S, Pezzagna S, Reuter D, Chia C T, Chern M Y, Wieck A D, Massies J 2014 J. Appl. Phys. 116 043909

    [13]

    Schneck J R, Dimakis E, Woodward J, Erramilli S, Moustakas T D, Ziegler L D 2012 Appl. Phys. Lett. 101 142102

    [14]

    Heikkilä O, Oksanen J, Tulkki J 2013 Appl. Phys. Lett. 102 111111

    [15]

    Vispute R D, Talyansky V, Trajanovic Z 1997 Appl. Phys. Lett. 70 2735

    [16]

    Li G C, Zhang C Y, Deng H D, Liu G Y, Lan S, Qian Q, Gopal A V 2013 Opt. Express 21 6020

    [17]

    Yang H, Xu S J, Li Q, Zhang J 2006 Appl. Phys. Lett. 88 161113

    [18]

    Saidi I, Bouzaïene L, Maaref H, Mejri H 2007 J. Appl. Phys. 101 094506

    [19]

    Fang Y, Wu X Z, Ye F, Chu X Y, Li Z G, Yang J Y, Song Y L 2013 J. Appl. Phys. 114 103507

    [20]

    Kravetsky I V, Tiginyanu I M, Hildebrandt R, Marowsky G, Pavlidis D, Eisenbach A, Hartnagel H L 2000 Appl. Phys. Lett. 76 810

    [21]

    Dai J, Dai Q F, Zeng J H, Lan S, Wan X, Tie S L 2013 IEEE J. Quantum Electron. 49 903

    [22]

    Dai J, Zeng J H, Lan S, Wan X, Tie S L 2013 Opt. Express 21 10025

  • [1] 刘庆彬, 蔚翠, 郭建超, 马孟宇, 何泽召, 周闯杰, 高学栋, 余浩, 冯志红. 多晶金刚石对硅基氮化镓材料的影响. 物理学报, 2023, 72(9): 098104. doi: 10.7498/aps.72.20221942
    [2] 雷振帅, 孙小伟, 刘子江, 宋婷, 田俊红. 氮化镓相图预测及其高压熔化特性研究. 物理学报, 2022, 71(19): 198102. doi: 10.7498/aps.71.20220510
    [3] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [4] 谢飞, 臧航, 刘方, 何欢, 廖文龙, 黄煜. 氮化镓在不同中子辐照环境下的位移损伤模拟研究. 物理学报, 2020, 69(19): 192401. doi: 10.7498/aps.69.20200064
    [5] 张志荣, 房玉龙, 尹甲运, 郭艳敏, 王波, 王元刚, 李佳, 芦伟立, 高楠, 刘沛, 冯志红. 基于GaN同质衬底的高迁移率AlGaN/GaN HEMT材料. 物理学报, 2018, 67(7): 076801. doi: 10.7498/aps.67.20172581
    [6] 何菊生, 张萌, 潘华清, 邹继军, 齐维靖, 李平. 基于变温霍尔效应方法的一类n-GaN位错密度的测量. 物理学报, 2017, 66(6): 067201. doi: 10.7498/aps.66.067201
    [7] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [8] 时强, 李路平, 张勇辉, 张紫辉, 毕文刚. GaN/InxGa1-xN型最后一个量子势垒对发光二极管内量子效率的影响. 物理学报, 2017, 66(15): 158501. doi: 10.7498/aps.66.158501
    [9] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [10] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [11] 张超宇, 熊传兵, 汤英文, 黄斌斌, 黄基锋, 王光绪, 刘军林, 江风益. 图形硅衬底GaN基发光二极管薄膜去除衬底及AlN缓冲层后单个图形内微区发光及 应力变化的研究. 物理学报, 2015, 64(18): 187801. doi: 10.7498/aps.64.187801
    [12] 黄斌斌, 熊传兵, 汤英文, 张超宇, 黄基锋, 王光绪, 刘军林, 江风益. 硅衬底氮化镓基LED薄膜转移至柔性黏结层基板后其应力及发光性能变化的研究. 物理学报, 2015, 64(17): 177804. doi: 10.7498/aps.64.177804
    [13] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [14] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究. 物理学报, 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [15] 李水清, 汪莱, 韩彦军, 罗毅, 邓和清, 丘建生, 张洁. 氮化镓基发光二极管结构中粗化 p型氮化镓层的新型生长方法. 物理学报, 2011, 60(9): 098107. doi: 10.7498/aps.60.098107
    [16] 邢艳辉, 韩军, 邓军, 李建军, 徐晨, 沈光地. p型GaN低温粗化提高发光二极管特性. 物理学报, 2010, 59(2): 1233-1236. doi: 10.7498/aps.59.1233
    [17] 江洋, 罗毅, 汪莱, 李洪涛, 席光义, 赵维, 韩彦军. 柱状与孔状图形衬底对MOVPE生长GaN体材料及LED器件的影响. 物理学报, 2009, 58(5): 3468-3473. doi: 10.7498/aps.58.3468
    [18] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [19] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [20] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
计量
  • 文章访问数:  5083
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 修回日期:  2018-10-15
  • 刊出日期:  2018-12-05

/

返回文章
返回