搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究

万建杰 赵鑫婷 李冀光 董晨钟

引用本文:
Citation:

Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究

万建杰, 赵鑫婷, 李冀光, 董晨钟

Theoretical investigation on Stark-induced transition probabilities of hydrogen-like ions

Wan Jian-Jie, Zhao Xin-Ting, Li Ji-Guang, Dong Chen-Zhong
PDF
HTML
导出引用
  • 基于微扰理论研究了静电场Stark效应诱导的类氢离子2s1/2-1s1/2跃迁, 给出了Z = 1—92类氢离子的Stark混合系数和2s1/2-1s1/2跃迁几率, 讨论了Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率随原子序数的变化规律以及相对论效应对Stark混合系数和诱导跃迁几率的影响. 结果表明, 给定电场强度时, 类氢离子的Stark诱导跃迁几率随着原子序数Z的增大单调减小. 另外, 相对论效应使得类氢离子的Stark诱导跃迁几率减小, 甚至在Z = 92时会减小到非相对论近似的55%.
    Based on the nondegenerate perturbation theory, the Stark-induced transitions are studied for hydrogen-like isoelectronic sequences (Z = 1–92). The Stark-induced mixing coefficients and transition probabilities between the 2s1/2-1s1/2 levels of hydrogen-like ions are reported. The trend of Stark-induced transition probabilities varying with atomic number Z between 2s1/2-1s1/2 levels of hydrogen-like ions and the relativistic effect on the Stark-induced mixing coefficients and transition probabilities are discussed. The scaling relations of the nonrelativistic and relativistic Stark-induced transition probabilities with atomic number Z are obtained. The results show that the Stark-induced transition probabilities of hydrogen-like ions decrease monotonically along the isoelectronic sequence with the increase of atomic number Z. In addition, the relativistic effect reduces the Stark-induced transition probabilities of hydrogen-like ions, for example, by about 55% at Z = 92.
      通信作者: 万建杰, wanjj@nwnu.edu.cn ; 李冀光, li_jiguang@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874090, 12075193)、甘肃省自然科学基金(批准号: 20JR10RA084)、甘肃省基础研究创新群体项目(批准号: 20JR5RA541)、甘肃省自然科学基金青年科技计划(批准号: 1506RJYA131)、西北师范大学青年教师科研能力提升计划(批准号: NWNU-LKQN-10-7)和西北师范大学物理与电子工程物理学科科研创新团队项目资助的课题
      Corresponding author: Wan Jian-Jie, wanjj@nwnu.edu.cn ; Li Ji-Guang, li_jiguang@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874090, 12075193), the Natural Science Foundation of Gansu Province, China (Grant Nos. 20JR10RA084, 20JR5RA541, 1506RJYA131), the Foundation of Northwest Normal University, China (Grant No. NWNU-LKQN-10-7), and the Scientific Research Foundation of Physics of College of Physics and Electronic Engineering, Northwest Normal University, China
    [1]

    Bucksbaum P, Commins E D, Hunter L 1981 Phys. Rev. Lett. 46 640Google Scholar

    [2]

    Drell P S, Commins E D 1984 Phys. Rev. Lett. 53 968Google Scholar

    [3]

    Gilbert S L, Noecker M C, Watts R N, Wieman C E 1985 Phys. Rev. Lett. 55 2680Google Scholar

    [4]

    Maul M, Schӓfer A, Indelicato P 1998 J. Phys. B 31 2725Google Scholar

    [5]

    Hunter L R, Walker W A, Weiss D S 1986 Phys. Rev. Lett. 56 823Google Scholar

    [6]

    Lellouch L P, Hunter L R 1987 Phys. Rev. A 36 3490Google Scholar

    [7]

    Wielandy S, Sun T H, Hilborn R C, Hunter L R 1992 Phys. Rev. A 46 7103Google Scholar

    [8]

    Fan C Y, Garcia-Munoz M, Sellin I A 1967 Phys. Rev. 161 6Google Scholar

    [9]

    Leventhal M, Murnick D E 1970 Phys. Rev. Lett. 25 1237Google Scholar

    [10]

    Murnick D E, Leventhal M, Kugel H W 1971 Phys. Rev. Lett. 27 1625Google Scholar

    [11]

    Kugel H W, Leventhal M, Murnick D E 1972 Phys. Rev. A 6 1306Google Scholar

    [12]

    Leventhal M, Murnick D E, Kugel H W 1972 Phys. Rev. Lett. 28 1609Google Scholar

    [13]

    Lawrence G P, Fan C Y, Bashkin S 1972 Phys. Rev. Lett. 28 1612Google Scholar

    [14]

    Gould H, Marrus R 1978 Phys. Rev. Lett. 41 1457Google Scholar

    [15]

    周世勋 原著, 陈灏 修订 2009 量子力学教程 (北京: 高等教育出版社) 第121页

    Zhou S X, Chen H 2009 Quantum Mechanics (Beijing: Higher Education Press) p121 (in Chinese)

    [16]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California) p400

    [17]

    Surzhykov A, Koval P, Fritzsche S 2005 Comput. Phys. Comm. 165 139Google Scholar

    [18]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) p640

    [19]

    Johnson W R 1985 Atom. Data Nucl. Data Tables 33 405Google Scholar

    [20]

    Johnson W R 1972 Phys. Rev. Lett. 29 1123Google Scholar

  • 图 1  外电场取向示意图

    Fig. 1.  Schematic diagram of an external electric field.

    图 2  Stark诱导跃迁示意图 (a) 无电场; (b) 外加电场

    Fig. 2.  Stark-induced transition diagram: (a) without electric field; (b) with electric fieled.

    图 3  类氢离子能级示意图

    Fig. 3.  Schematic diagram of hydrogen-like ion levels.

    图 4  类氢离子2s1/2和2p1/2, 3/2之间的Stark混合系数模方(NR和R分别表示非相对论和相对论结果)

    Fig. 4.  Module squares of Stark mixing coefficients between 2s1/2 and 2p1/2, 3/2 states of hydrogen-like ions (NR and R stand for nonrelativistic and relativistic cases, respectively).

    图 5  类氢Li2+离子和Ar17+离子2s1/2能级的Stark诱导跃迁寿命

    Fig. 5.  Stark-induced lifetime of 2s1/2 levels for hydrogen-like Li2+ and Ar17+ ions.

    图 6  类氢离子2s1/2-1s1/2能级之间的Stark诱导跃迁几率

    Fig. 6.  Stark-induced transition probability between 2s1/2-1s1/2 levels of hydrogen-like ions.

    表 1  类氢离子n = 2能级差及径向轨道矩阵元, 其中a[b]表示a × 10b

    Table 1.  Energy differences and radial orbital matrix elements for hydrogen-like ions, where a[b] stands for a × 10b

    ZEnergy difference/cm–1Matrix element
    ΔE1[19]ΔE2$\langle $2p1/2|r||2s1/2$\rangle $$\langle $2p3/2||r||2s1/2$\rangle $$\langle $2p||r||2s $\rangle $$\langle $1s1/2||r||2p1/2$\rangle $$\langle $1s1/2||r||2p3/2$\rangle $$\langle $1s||r||2p$\rangle $
    13.52868[-2]–3.65221[-1]–5.19604–5.19611–5.196151.290241.290241.29027
    24.68400[-1]–5.84353[0]–2.59785–2.59798–2.598080.645090.645080.64513
    32.09220[0]–2.95829[1]–1.73170–1.73191–1.732050.430020.430010.43009
    45.99720[0]–9.34965[1]–1.29858–1.29885–1.299040.322470.322470.32257
    62.60840[1]–4.73326[2]–0.86533–0.86575–0.866030.214900.214890.21504
    87.32500[1]–1.49594[3]–0.64860–0.64915–0.649520.161090.161080.16128
    101.62100[2]–3.65221[3]–0.51846–0.51915–0.519620.128790.128780.12903
    123.08800[2]–7.57322[3]–0.43163–0.43246–0.433010.107240.107220.10752
    145.30600[2]–1.40303[4]–0.36954–0.37051–0.371150.091830.091810.09216
    168.46400[2]–2.39351[4]–0.32291–0.32402–0.324760.080260.080240.08064
    181.27570[3]–3.83394[4]–0.28659–0.28784–0.288680.071250.071230.07168
    201.83800[3]–5.84353[4]–0.25749–0.25888–0.259810.064030.064010.06451
    243.45000[3]–1.21171[5]–0.21372–0.21539–0.216510.053180.053150.05376
    285.86400[3]–2.24485[5]–0.18232–0.18426–0.185580.045400.045370.04608
    329.28800[3]–3.82962[5]–0.15865–0.16087–0.162380.039540.039500.04032
    361.39300[4]–6.13430[5]–0.14013–0.14263–0.144340.034960.034920.03584
    402.00100[4]–9.34965[5]–0.12522–0.12799–0.129900.031270.031230.03226
    442.78800[4]–1.36888[6]–0.11292–0.11597–0.118090.028230.028190.02932
    483.78200[4]–1.93874[6]–0.10259–0.10592–0.108250.025680.025630.02688
    525.03100[4]–2.67035[6]–0.09376–0.09737–0.099930.023510.023450.02481
    566.56100[4]–3.59176[6]–0.08612–0.09001–0.092790.021620.021560.02304
    608.45400[4]–4.73326[6]–0.07942–0.08359–0.086600.019970.019910.02150
    641.08200[5]–6.12739[6]–0.07348–0.07793–0.081190.018500.018440.02016
    681.37000[5]–7.80892[6]–0.06817–0.07290–0.076410.017200.017130.01897
    721.73900[5]–9.81489[6]–0.06338–0.06839–0.072170.016010.015950.01792
    762.20000[5]–1.21846[7]–0.05902–0.06432–0.068370.014940.014870.01698
    802.79500[5]–1.49594[7]–0.05503–0.06060–0.064950.013950.013880.01613
    843.56700[5]–1.81833[7]–0.05135–0.05720–0.061860.013040.012970.01536
    884.62700[5]–2.19021[7]–0.04793–0.05406–0.059050.012190.012120.01466
    926.07300[5]–2.61642[7]–0.04473–0.05114–0.056480.011390.011330.01402
    下载: 导出CSV

    表 2  类氢离子2s1/2-1s1/2之间的跃迁波长和1 V/m 电场中的Stark诱导跃迁几率, 其中a[b]表示a × 10b

    Table 2.  Transition wavelength and Stark-induced probability between 2s1/2-1s1/2 of hydrogen-like ions in electric field of 1 V/m, where a[b] stands for a × 10b

    Zλ/nmTransition probability/s–1
    Model IModel II
    ASIT (NR)ASIT(R)ASIT (NR)ASIT (R)
    1121.502872.7510[–1]2.7508[–1]2.8023[–1]2.8022[–1]
    230.375726.2450[–3]6.2439[–3]6.3253[–3]6.3242[–3]
    313.500327.0428[–4]7.0399[–4]7.1133[–4]7.1104[–4]
    47.593931.5238[–4]1.5227[–4]1.5364[–4]1.5353[–4]
    63.375081.8124[–5]1.8095[–5]1.8234[–5]1.8205[–5]
    81.898484.0858[–6]4.0740[–6]4.1054[–6]4.0936[–6]
    101.215031.3036[–6]1.2978[–6]1.3087[–6]1.3029[–6]
    120.843775.1727[–7]5.1392[–7]5.1899[–7]5.1564[–7]
    140.619912.3847[–7]2.3637[–7]2.3915[–7]2.3705[–7]
    160.474621.2240[–7]1.2099[–7]1.2271[–7]1.2130[–7]
    180.375016.8196[–8]6.7198[–8]6.8347[–8]6.7348[–8]
    200.303764.0558[–8]3.9825[–8]4.0638[–8]3.9904[–8]
    240.210941.6577[–8]1.6143[–8]1.6603[–8]1.6169[–8]
    280.154987.8098[–9]7.5301[–9]7.8204[–9]7.5406[–9]
    320.118664.0660[–9]3.8747[–9]4.0708[–9]3.8794[–9]
    360.093752.2878[–9]2.1507[–9]2.2901[–9]2.1530[–9]
    400.075941.3688[–9]1.2668[–9]1.3700[–9]1.2680[–9]
    440.062768.5316[–10]7.7563[–10]8.5387[–10]7.7630[–10]
    480.052745.5176[–10]4.9160[–10]5.5218[–10]4.9199[–10]
    520.044933.6594[–10]3.1869[–10]3.6620[–10]3.1894[–10]
    560.038742.4954[–10]2.1184[–10]2.4971[–10]2.1199[–10]
    600.033751.7254[–10]1.4233[–10]1.7265[–10]1.4243[–10]
    640.029661.1984[–10]9.5735[–11]1.1992[–10]9.5802[–11]
    680.026288.4389[–11]6.5035[–11]8.4441[–11]6.5081[–11]
    720.023445.8719[–11]4.3471[–11]5.8755[–11]4.3503[–11]
    760.021044.0878[–11]2.8934[–11]4.0905[–11]2.8956[–11]
    800.018982.8062[–11]1.8889[–11]2.8082[–11]1.8905[–11]
    840.017221.8996[–11]1.2085[–11]1.9011[–11]1.2096[–11]
    880.015691.2390[–11]7.3978[–12]1.2401[–11]7.4061[–12]
    920.014367.8610[–12]4.3696[–12]7.8695[–12]4.3757[–12]
    下载: 导出CSV

    表 3  类氢Li2+离子和Ar17+离子2s能级的相对论Stark诱导跃迁寿命, 其中a(b)[c]表示a(b) × 10c, b是实验测量不确定度

    Table 3.  Relativistic Stark-induced transition lifetime for 2s level of hydrogen-like Li2+ and Ar17+ ions, where a(b)[c] stands for a(b) × 10c and b is the experimental uncertainty.

    Zε/(V·m-1)τSIT/ns
    ExpModel IModel II
    37.425(2)[5]2.629(21)[8]2.582.55
    9.173(2)[5]1.764(35) [8]1.691.67
    185.93[7]3.86(3) [14]4.234.22
    7.14[7]2.80(6) [14]2.922.91
    8.06[7]2.28(2) [14]2.292.29
    8.60[7]2.00(2) [14]2.012.01
    下载: 导出CSV
  • [1]

    Bucksbaum P, Commins E D, Hunter L 1981 Phys. Rev. Lett. 46 640Google Scholar

    [2]

    Drell P S, Commins E D 1984 Phys. Rev. Lett. 53 968Google Scholar

    [3]

    Gilbert S L, Noecker M C, Watts R N, Wieman C E 1985 Phys. Rev. Lett. 55 2680Google Scholar

    [4]

    Maul M, Schӓfer A, Indelicato P 1998 J. Phys. B 31 2725Google Scholar

    [5]

    Hunter L R, Walker W A, Weiss D S 1986 Phys. Rev. Lett. 56 823Google Scholar

    [6]

    Lellouch L P, Hunter L R 1987 Phys. Rev. A 36 3490Google Scholar

    [7]

    Wielandy S, Sun T H, Hilborn R C, Hunter L R 1992 Phys. Rev. A 46 7103Google Scholar

    [8]

    Fan C Y, Garcia-Munoz M, Sellin I A 1967 Phys. Rev. 161 6Google Scholar

    [9]

    Leventhal M, Murnick D E 1970 Phys. Rev. Lett. 25 1237Google Scholar

    [10]

    Murnick D E, Leventhal M, Kugel H W 1971 Phys. Rev. Lett. 27 1625Google Scholar

    [11]

    Kugel H W, Leventhal M, Murnick D E 1972 Phys. Rev. A 6 1306Google Scholar

    [12]

    Leventhal M, Murnick D E, Kugel H W 1972 Phys. Rev. Lett. 28 1609Google Scholar

    [13]

    Lawrence G P, Fan C Y, Bashkin S 1972 Phys. Rev. Lett. 28 1612Google Scholar

    [14]

    Gould H, Marrus R 1978 Phys. Rev. Lett. 41 1457Google Scholar

    [15]

    周世勋 原著, 陈灏 修订 2009 量子力学教程 (北京: 高等教育出版社) 第121页

    Zhou S X, Chen H 2009 Quantum Mechanics (Beijing: Higher Education Press) p121 (in Chinese)

    [16]

    Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley: University of California) p400

    [17]

    Surzhykov A, Koval P, Fritzsche S 2005 Comput. Phys. Comm. 165 139Google Scholar

    [18]

    Grant I P 2007 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) p640

    [19]

    Johnson W R 1985 Atom. Data Nucl. Data Tables 33 405Google Scholar

    [20]

    Johnson W R 1972 Phys. Rev. Lett. 29 1123Google Scholar

  • [1] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究. 物理学报, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [2] 戈迪, 赵国鹏, 祁月盈, 陈晨, 高俊文, 侯红生. 等离子体环境中相对论效应对类氢离子光电离过程的影响. 物理学报, 2024, 73(8): 083201. doi: 10.7498/aps.73.20240016
    [3] 段春泱, 李娜, 赵岩, 李昌勇. 利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能. 物理学报, 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [4] 陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海. 刚性对称陀螺分子Stark效应的精确解. 物理学报, 2021, 70(18): 180301. doi: 10.7498/aps.70.20210214
    [5] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [6] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [7] 郑晖, 申亮, 白彬, 孙博. NiAl化合物表面成分的准标度关系与偏离放大效应. 物理学报, 2012, 61(1): 016104. doi: 10.7498/aps.61.016104
    [8] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [9] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱. 物理学报, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [10] 李博文, 蒋军, 董晨钟, 王建国, 丁晓彬. 等离子体屏蔽效应对类氢离子能级结构和辐射跃迁性质的影响. 物理学报, 2009, 58(8): 5274-5279. doi: 10.7498/aps.58.5274
    [11] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [12] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [13] 俞谦, 王健华, 李德杰, 王玉田, 庄岩, 姜炜, 黄绮, 周钧铭. InGaAs/InAlAs多量子阱结构的量子限制Stark效应研究. 物理学报, 1996, 45(2): 274-282. doi: 10.7498/aps.45.274
    [14] 蒋孟衡, 张森. 高激发StarK能级寿命的计算. 物理学报, 1995, 44(3): 357-364. doi: 10.7498/aps.44.357
    [15] 丁广良, 刘炳模, 王嘉珉, 龚顺生. Cs原子里德伯态Stark能级场电离阈值与|ml|关系的测定. 物理学报, 1994, 43(11): 1754-1758. doi: 10.7498/aps.43.1754
    [16] 张森, 邱济真, 梅式民, 陈星. Ca和Sr原子n′dnl自电离态在低电场中的线性Stark效应. 物理学报, 1990, 39(8): 32-37. doi: 10.7498/aps.39.32
    [17] 何林生. 动态Stark效应对双光子过程中原子和场的动力学行为的影响. 物理学报, 1989, 38(12): 1927-1936. doi: 10.7498/aps.38.1927
    [18] 徐雷, 赵有源, 王国益, 王兆永. Al原子高激发态nf2F光谱与Stark效应观察. 物理学报, 1989, 38(10): 1658-1664. doi: 10.7498/aps.38.1658
    [19] 潘晓川, 李家明. 等电子系列离子的广义振子强度密度之标度关系. 物理学报, 1985, 34(11): 1500-1508. doi: 10.7498/aps.34.1500
    [20] 吴大猷. 硷金属原子之Stark效应. 物理学报, 1936, 2(1): 15-21. doi: 10.7498/aps.2.15
计量
  • 文章访问数:  5373
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-25
  • 修回日期:  2021-04-25
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回