搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究

毕文杰 杨爽 周静 金伟 陈文

引用本文:
Citation:

Cu3Mo2O9/MoO3纳米复合材料制备及三甲胺气敏性能研究

毕文杰, 杨爽, 周静, 金伟, 陈文

Research on synthesis of Cu3Mo2O9/MoO3 nanocomposite and trimethylamine gas sensing properties

Bi Wen-Jie, Yang Shuang, Zhou Jing, Jin Wei, Chen Wen
PDF
HTML
导出引用
  • 水产品的新鲜度极大地影响着人类的生命及身体健康, 水产品在存放过程中会释放出以三甲胺为代表的胺类气体, 通过检测这类气体的浓度可以监控水产品的新鲜度. 本文以具有优良气体敏感性能的MoO3纳米带作为基体, 通过引入Cu3Mo2O9纳米颗粒制备Cu3Mo2O9/MoO3复合材料, 具有非常好的三甲胺气体敏感性能、快速响应/恢复时间及长期稳定性. 结果表明, 采用这种复合材料制备的气敏元件在50—240 ℃, 质量分数为5×10–6时对三甲胺气体的响应可达到Rair/Rgas = 13.9, 最小检测极限的体积分数为2×10–7. 分布在MoO3纳米带表面的Cu3Mo2O9颗粒与基体形成异质结界面, 利用Cu3Mo2O9的强氧吸附能力与催化效应促进电子与空穴的分离, 显著改善了复合材料的电子输运性能和气敏特性, 为制备高性能MoO3基气敏材料提供了新的策略.
    Aquatic products contain an incredibly high nutritional value for the human body and gradually become indispensable ingredients on the Chinese table. Trimethylamine (TMA) from the deterioration of aquatic products can serve as an indicator to measure fish freshness. It is a challenge to develop an instant, fast, convenient, and efficient gas sensor for fish freshness. In this study, a novel Cu3Mo2O9/MoO3 composite gas sensing material is prepared by introducing Cu3Mo2O9 nanoparticles on the surface of MoO3 nanobelts. The results of SEM and TEM images show that the Cu3Mo2O9 nanoparticles are uniformly dispersed. Then, the TMA sensing performance of a resistance-type gas sensor based the prepared Cu3Mo2O9/MoO3 composite is tested at optimal operating temperature (240 °C). the results show that the sensor possesses good response (13.9) at low concentration (5×10–6), with excellent low detection limit (2×10–7). The response time is also significantly shortened. The high sensing performance of Cu3Mo2O9/MoO3 composite is attributed to the heterojunction interface, which promotes the separation of electrons from holes through its strong oxygen adsorption and catalytic effect. This significantly improves the electron transport properties and gas sensing characteristics of the composite material. Electrons flow from MoO3 nanoribbons to Cu3Mo2O9, and the Fermi level reaches equilibrium. This process results in the formation of an electron loss layer underneath MoO3, and the charge transfer channel narrows, which is consistent with previous result. When trimethylamine dissociates on the nanoribbons to release electrons, the balance of the fermi lever is disrupted, and electrons flow from MoO3 to Cu3Mo2O9. As a result, the charge transfer channel becomes thinner, resulting in resistance modulation and increased sensitivity. In addition, the enhancement of trimethylamine sensing performance of Cu3Mo2O9/MoO3 nanocomposite can be explained by the enhancement of gas adsorption and diffusion: MoO3 nanoribbons as a skeleton can effectively disperse Cu3Mo2O9 particles and increase the adsorption capacity of gas molecules. And the enhanced response of Cu3Mo2O9/MoO3 may be due to the good catalytic effect of Cu3Mo2O9, which is conducive to oxygen adsorption. This work provides a new strategy for preparing high-performance MoO3-based gas sensing materials.
      通信作者: 周静, zhoujing@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62171331)、武汉理工大学三亚科教创新园开放基金(批准号: 2020KF0026)和湖北省自然科学基金(批准号: 2020CFB188)资助的课题.
      Corresponding author: Zhou Jing, zhoujing@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62171331), the Open Fund of the Sanya Science and Education Innovation Park of Wuhan University of Technology, China (Grant No. 2020KF0026), and the Hubei Provincial Natural Science Foundation of China (Grant No. 2020CFB188).
    [1]

    Wang T S, Zhang S F, Yu Q, Wang S P, Sun P, Lu H Y, Liu F M, Yan X, Lu G Y 2018 ACS Appl. Mater. Interfaces 10 38Google Scholar

    [2]

    Li C, Feng C H, Qu F D, Liu J, Zhu L H, Lin Y, Wang Y, Li F, Zhou J R, Ruan S P 2015 Sens. Actuators B 207 90Google Scholar

    [3]

    Yoon H C, Liang X S, Kang Y C, Lee J H 2015 Sens. Actuators A 207 330Google Scholar

    [4]

    Chu X, Liang S, Chen T 2010 Mater. Chem. Phys. 123 396Google Scholar

    [5]

    Chu X F, Liang S M, Sun W Q 2010 Sens. Actuators, A 148 399Google Scholar

    [6]

    Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [7]

    Xu K, Duan K L, Tang Q, Zhu Q, Zhao W, Yu W, Yang Y, Yu T, Yuan G L 2019 Cryst. Eng. Comm 21 5834Google Scholar

    [8]

    Li Z Q, Song P, Yang Z X, Wang Q 2017 Ceram. Int. 44 3364Google Scholar

    [9]

    Meng D, Li R X, Zhang L, Wang G S, Zhang Y, San X G, Wang X L 2022 Sens. Actuators. 4 87Google Scholar

    [10]

    Wang L P, Jin Z, Luo T, Ding Y, Liu J H, Wang X F, Li M Q 2019 New J. Chem. 43 3619Google Scholar

    [11]

    Ahn H, Noh H J, Kim S B, Overfelt R A, Yoon Y S, KimD J 2010 Mater. Chem. Phys. 124 563Google Scholar

    [12]

    Zhang S, Song P, Zhang J, Li Z Q, Yang Z X, Wang Q 2016 RSC Adv. 6 50423Google Scholar

    [13]

    Kathirvelan J, Vijayaraghavan R, Thomas A 2017 Sens. Rev. 37 147Google Scholar

    [14]

    Gou Y, Yang L, Liu Z, Asiri A M, Hu J, Sun X P 2018 Inorg. Nano-Met. Chem. 57 147Google Scholar

    [15]

    Wang W X, Jin W, Yang S, Jian Z L, Chen W 2021 Sens. Actuators B 15 129583Google Scholar

    [16]

    Dutta D P, Rathore A, Ballal A, Tyagi A K 2015 RSC Adv. 10 10389Google Scholar

    [17]

    Pan H, Jin L, Su H, Zhang B B, Zhang L, Zhang H T, Yang W Q 2017 J. Alloys Compd. 695 2965Google Scholar

    [18]

    Shen S K, Zhang X F, Cheng X L, Xu Y M, Gao S, Zhao H, Zhou X, Huo L H 2019 ACS Appl. Nano Mater. 2 8016Google Scholar

    [19]

    薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803Google Scholar

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803Google Scholar

    [20]

    韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波 2022 物理学报 71 010701Google Scholar

    Han D, Liu Z H, Liu L L, Han X M, Liu D M, Gao K, Sang S B 2022 Acta Phys. Sin. 71 010701Google Scholar

    [21]

    Wang J X, Zhou Q, Peng S D, Xu L N, Zeng W 2020 Front. Nanochem. 8 339Google Scholar

    [22]

    Sui L L, Xu Y M, Zhang X F, Cheng X L, Gao S, Zhao H, Cai Z, Huo L H 2015 Sens. Actuators, B 208 73Google Scholar

    [23]

    秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301Google Scholar

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301Google Scholar

    [24]

    刘志福, 李培, 程铁栋, 黄文 2020 物理学报 69 248101Google Scholar

    Liu Z F, Li P, Cheng T D, Huang W 2020 Acta Phys. Sin. 69 248101Google Scholar

    [25]

    李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可 2019 物理学报 69 198101Google Scholar

    Li D K, He B Y, Chen K Q, Pi M Y, Cui Y T, Zhang D K 2019 Acta Phys. Sin. 69 198101Google Scholar

    [26]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 物理学报 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [27]

    Sakaushi K, Thomas J, Kaskel S, Eckert J 2013 Chem. Mater. 25 2557Google Scholar

    [28]

    Rothschild A, Komem Y 2004 Appl. Surf. Sci 95 6374Google Scholar

    [29]

    Yao M S, Tang W X, Wang G E, Nath B, Xu G 2016 Adv. Mater. 28 5229Google Scholar

    [30]

    Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R 2018 Nanoscale 10 14107Google Scholar

    [31]

    Majhi S M, Lee H J, Choi H N, Cho H Y, Kim J S, Lee C R, Yu Y T 2019 Cryst. Eng. Comm 21 5084Google Scholar

    [32]

    Gao X, Li Y Q, Zeng W, Zhang C F, Wei Y M 2017 J. Mater. Sci. Mater. Electron. 28 18781Google Scholar

    [33]

    Ji H C, Zeng W, Li Y Q 2019 Physica E 114 113646Google Scholar

    [34]

    Lü J X, Chen X L, Chen S S, Li H, Deng H 2019 J. Electroanal. Chem. 842 161Google Scholar

    [35]

    Li Z Q, Wang W J, Zhao Z C, Liu X R, Song P 2017 Mater. Sci. Semicond. Process. 66 33Google Scholar

    [36]

    Li Z Q, Wang W J, Zhao Z F, Liu X R, Song P 2017 RSC Adv. 7 28366Google Scholar

    [37]

    Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Galina S Z 2016 Sens. Actuators, B 226 478Google Scholar

    [38]

    Zhang F D, Dong X, Cheng X L, Xu Y M, Zhang X F, Huo L H 2019 ACS Appl. Mater. Interfaces 11 11755Google Scholar

  • 图 1  (a) MoO3纳米带、Cu3Mo2O9颗粒及Cu3Mo2O9/MoO3纳米复合材料的XRD图谱; (b) Cu3Mo2O9/MoO3纳米复合材料的TEM图像; (c)—(e) 元素映射图像: Cu3Mo2O9/MoO3纳米复合材料的Mo, O, Cu图像

    Fig. 1.  (a) XRD patterns of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites; (b) TEM image of Cu3Mo2O9/MoO3 nanocomposites; (c)–(e) Mo, O and Cu element mapping images of Cu3Mo2O9/MoO3 nanocomposites.

    图 2  (a), (b) 纯MoO3纳米带和Cu3Mo2O9/MoO3纳米复合材料的SEM图像; (c) Cu3Mo2O9/MoO3纳米复合材料的TEM图像 (插图为MoO3纳米带和Cu3Mo2O9颗粒的HRTEM图)

    Fig. 2.  (a), (b) SEM image of pure MoO3 nanobelts and Cu3Mo2O9/MoO3 nanocomposites; (c) TEM image of Cu3Mo2O9/MoO3 nanocomposites (Inset shows HRTEM patten of the MoO3 nanobelts and Cu3Mo2O9 particle).

    图 3  MoO3与Cu3Mo2O9/MoO3复合材料的XPS图像 (a) 全谱; (b) Cu 2p; (c) Mo 3d; (d) O 1s

    Fig. 3.  XPS images of MoO3 and Cu3Mo2O9/MoO3 composites: (a) Full spectrum; (b) Cu 2p; (c) Mo 3d; (d) O 1s.

    图 4  (a) 不同工作温度下MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料对体积分数为5×10–6 的TMA的响应; (b) 190 ℃下MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料对不同浓度TMA的响应折线图

    Fig. 4.  (a) Response of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to TMA with a volume fraction of 5×10–6 at different working temperatures; (b) the corresponding line chart of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to different concentrations of TMA at 190 ℃.

    图 5  (a) MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料在190 ℃下对不同浓度TMA的实时响应/恢复曲线; (b) Cu3Mo2O9/MoO3纳米复合材料对体积分数为5×10–6的TMA的响应/恢复时间

    Fig. 5.  (a) Real-time response/recovery curves of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites to different concentrations of TMA at 190 ℃; (b) response/recovery time of Cu3Mo2O9/MoO3 nanocomposites to TMA with a volume fraction of 5×10–6.

    图 6  Cu3Mo2O9/MoO3纳米复合材料在190 ℃下对体积分数为5×10–6 的TMA的动态响应(a)及长期稳定性(b)

    Fig. 6.  Dynamic response (a) and long-term stability (b) of Cu3Mo2O9/MoO3 nanocomposites to trimethylamine with a volume fraction of 5×10–6 at 190 ℃.

    图 7  Cu3Mo2O9/MoO3纳米复合材料对不同气体的响应比较

    Fig. 7.  Response comparison of Cu3Mo2O9/MoO3 nanocomposites to various.

    图 8  Cu3Mo2O9/MoO3-3在190 ℃, 20%—60%相对湿度范围内对TMA的响应情况

    Fig. 8.  Response of Cu3Mo2O9/MoO3-3 composite sensor to trimethylamine at 190 ℃ and 20%–60% relative humidity.

    图 9  (a) Cu3Mo2O9/MoO3复合材料的紫外可见吸收光谱; (b) 用于MoO3纳米带、Cu3Mo2O9颗粒和Cu3Mo2O9/MoO3纳米复合材料带隙测量的Tauc图

    Fig. 9.  (a) UV-vis absorption spectra of Cu3Mo2O9/MoO3 nanocomposites; (b) Tauc plot for band gap measurement of MoO3 nanobelts, Cu3Mo2O9 particle, and Cu3Mo2O9/MoO3 nanocomposites.

    图 10  (a), (d), (g) Au, Cu3Mo2O9和MoO3的UPS光谱; (b), (e), (h) 计算的Ecut-off值; (c), (f), (i) 计算的EFermi

    Fig. 10.  (a), (d), (g) UPS spectra of Au, Cu3Mo2O9 and MoO3; (b), (e), (h) calculated Ecut-off values, (c), (f), (i) calculated EFermi values.

    图 11  Cu3Mo2O9/MoO3纳米复合材料体系的能带图 (a) 平衡前 (b) 平衡后 (Evac, 真空水平; Ef, 费米能级; Ec, 导带底部; Ev, 价电子带顶部; Eg, 带隙). (c) Cu3Mo2O9/MoO3纳米复合材料暴露于TMA的示意图

    Fig. 11.  Energy band diagrams of Cu3Mo2O9/MoO3 nanocomposites system: (a) Before and (b) after equilibrium (Evac, the vacuum level; Ef, Fermi level; Ec, the bottom of conduction band; Ev, the top of valence band; Eg, band gap). (c) Schematic diagram of Cu3Mo2O9/MoO3 nanocomposites exposed to TMA.

    表 1  不同材料对TMA的气敏性能对比

    Table 1.  Comparison of gas-sensing performance of gas towards TMA.

    材料温度/℃检测限/(10–6)S5 ppm/(Rair·Rgas–1)响应/恢复时间/sRef.
    W-MoO32805约46/11[35]
    Ce-MoO2405约510/20[36]
    MoO3 nanobelts10011[37]
    MoO3/NiO35013.59[7]
    CoMoO4/MoO32205约9.09/10[8]
    MoO3/Bi2Mo3O1270约3.37.1/—[38]
    Cu3Mo2O9/MoO31900.213.97/25本文
    下载: 导出CSV
  • [1]

    Wang T S, Zhang S F, Yu Q, Wang S P, Sun P, Lu H Y, Liu F M, Yan X, Lu G Y 2018 ACS Appl. Mater. Interfaces 10 38Google Scholar

    [2]

    Li C, Feng C H, Qu F D, Liu J, Zhu L H, Lin Y, Wang Y, Li F, Zhou J R, Ruan S P 2015 Sens. Actuators B 207 90Google Scholar

    [3]

    Yoon H C, Liang X S, Kang Y C, Lee J H 2015 Sens. Actuators A 207 330Google Scholar

    [4]

    Chu X, Liang S, Chen T 2010 Mater. Chem. Phys. 123 396Google Scholar

    [5]

    Chu X F, Liang S M, Sun W Q 2010 Sens. Actuators, A 148 399Google Scholar

    [6]

    Adamu B I, Falak A, Tian Y, Tan X H, Meng X M, Chen P P, Wang H F, Chu W G 2020 ACS Appl. Mater. Interfaces 12 8411Google Scholar

    [7]

    Xu K, Duan K L, Tang Q, Zhu Q, Zhao W, Yu W, Yang Y, Yu T, Yuan G L 2019 Cryst. Eng. Comm 21 5834Google Scholar

    [8]

    Li Z Q, Song P, Yang Z X, Wang Q 2017 Ceram. Int. 44 3364Google Scholar

    [9]

    Meng D, Li R X, Zhang L, Wang G S, Zhang Y, San X G, Wang X L 2022 Sens. Actuators. 4 87Google Scholar

    [10]

    Wang L P, Jin Z, Luo T, Ding Y, Liu J H, Wang X F, Li M Q 2019 New J. Chem. 43 3619Google Scholar

    [11]

    Ahn H, Noh H J, Kim S B, Overfelt R A, Yoon Y S, KimD J 2010 Mater. Chem. Phys. 124 563Google Scholar

    [12]

    Zhang S, Song P, Zhang J, Li Z Q, Yang Z X, Wang Q 2016 RSC Adv. 6 50423Google Scholar

    [13]

    Kathirvelan J, Vijayaraghavan R, Thomas A 2017 Sens. Rev. 37 147Google Scholar

    [14]

    Gou Y, Yang L, Liu Z, Asiri A M, Hu J, Sun X P 2018 Inorg. Nano-Met. Chem. 57 147Google Scholar

    [15]

    Wang W X, Jin W, Yang S, Jian Z L, Chen W 2021 Sens. Actuators B 15 129583Google Scholar

    [16]

    Dutta D P, Rathore A, Ballal A, Tyagi A K 2015 RSC Adv. 10 10389Google Scholar

    [17]

    Pan H, Jin L, Su H, Zhang B B, Zhang L, Zhang H T, Yang W Q 2017 J. Alloys Compd. 695 2965Google Scholar

    [18]

    Shen S K, Zhang X F, Cheng X L, Xu Y M, Gao S, Zhao H, Zhou X, Huo L H 2019 ACS Appl. Nano Mater. 2 8016Google Scholar

    [19]

    薄小庆, 刘唱白, 李海英, 刘丽, 郭欣, 刘震, 刘丽丽, 苏畅 2014 物理学报 63 176803Google Scholar

    Bo X Q, Liu C B, Li H Y, Liu L, Guo X, Liu Z, Liu L L, Su C 2014 Acta Phys. Sin. 63 176803Google Scholar

    [20]

    韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波 2022 物理学报 71 010701Google Scholar

    Han D, Liu Z H, Liu L L, Han X M, Liu D M, Gao K, Sang S B 2022 Acta Phys. Sin. 71 010701Google Scholar

    [21]

    Wang J X, Zhou Q, Peng S D, Xu L N, Zeng W 2020 Front. Nanochem. 8 339Google Scholar

    [22]

    Sui L L, Xu Y M, Zhang X F, Cheng X L, Gao S, Zhao H, Cai Z, Huo L H 2015 Sens. Actuators, B 208 73Google Scholar

    [23]

    秦玉香, 王飞, 沈万江, 胡明 2012 物理学报 61 057301Google Scholar

    Qin Y X, Wang F, Shen W J, Hu M 2012 Acta Phys. Sin. 61 057301Google Scholar

    [24]

    刘志福, 李培, 程铁栋, 黄文 2020 物理学报 69 248101Google Scholar

    Liu Z F, Li P, Cheng T D, Huang W 2020 Acta Phys. Sin. 69 248101Google Scholar

    [25]

    李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可 2019 物理学报 69 198101Google Scholar

    Li D K, He B Y, Chen K Q, Pi M Y, Cui Y T, Zhang D K 2019 Acta Phys. Sin. 69 198101Google Scholar

    [26]

    艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬 2019 物理学报 68 197101Google Scholar

    Ai W, Hu X H, Pan L, Chen C C, Wang Y F, Shen X D 2019 Acta Phys. Sin. 68 197101Google Scholar

    [27]

    Sakaushi K, Thomas J, Kaskel S, Eckert J 2013 Chem. Mater. 25 2557Google Scholar

    [28]

    Rothschild A, Komem Y 2004 Appl. Surf. Sci 95 6374Google Scholar

    [29]

    Yao M S, Tang W X, Wang G E, Nath B, Xu G 2016 Adv. Mater. 28 5229Google Scholar

    [30]

    Lupan O, Postica V, Hoppe M, Wolff N, Polonskyi O, Pauporté T, Viana B, Majérus O, Kienle L, Faupel F, Adelung R 2018 Nanoscale 10 14107Google Scholar

    [31]

    Majhi S M, Lee H J, Choi H N, Cho H Y, Kim J S, Lee C R, Yu Y T 2019 Cryst. Eng. Comm 21 5084Google Scholar

    [32]

    Gao X, Li Y Q, Zeng W, Zhang C F, Wei Y M 2017 J. Mater. Sci. Mater. Electron. 28 18781Google Scholar

    [33]

    Ji H C, Zeng W, Li Y Q 2019 Physica E 114 113646Google Scholar

    [34]

    Lü J X, Chen X L, Chen S S, Li H, Deng H 2019 J. Electroanal. Chem. 842 161Google Scholar

    [35]

    Li Z Q, Wang W J, Zhao Z C, Liu X R, Song P 2017 Mater. Sci. Semicond. Process. 66 33Google Scholar

    [36]

    Li Z Q, Wang W J, Zhao Z F, Liu X R, Song P 2017 RSC Adv. 7 28366Google Scholar

    [37]

    Yang S, Liu Y L, Chen W, Jin W, Zhou J, Zhang H, Galina S Z 2016 Sens. Actuators, B 226 478Google Scholar

    [38]

    Zhang F D, Dong X, Cheng X L, Xu Y M, Zhang X F, Huo L H 2019 ACS Appl. Mater. Interfaces 11 11755Google Scholar

  • [1] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器. 物理学报, 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [3] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [4] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [5] 王婉玉, 石凯熙, 李金华, 楚学影, 方铉, 匡尚奇, 徐国华. MoO3覆盖层对MoS2基光伏型光电探测器性能的影响. 物理学报, 2023, 72(14): 147301. doi: 10.7498/aps.72.20230464
    [6] 李磊, 支钰崧, 张茂林, 刘增, 张少辉, 马万煜, 许强, 沈高辉, 王霞, 郭宇锋, 唐为华. 关于Ga2O3/Al0.1Ga0.9N同型异质结的双波段、双模式紫外探测性能分析. 物理学报, 2023, 72(2): 027301. doi: 10.7498/aps.72.20221738
    [7] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [8] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [9] 房晓南, 杜颜伶, 吴晨雨, 刘静. (SrVO3)5/(SrTiO3)1(111)异质结金属-绝缘体转变和磁性调控的第一性原理研究. 物理学报, 2022, 71(18): 187301. doi: 10.7498/aps.71.20220627
    [10] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [11] 刘川川, 郝飞翔, 殷月伟, 李晓光. Pt/BiFeO3/Nb:SrTiO3异质结的光伏效应和光调控整流特性. 物理学报, 2020, 69(12): 127301. doi: 10.7498/aps.69.20200280
    [12] 艾雯, 胡小会, 潘林, 陈长春, 王一峰, 沈晓冬. 二维材料WTe2用于气体传感器的性能研究. 物理学报, 2019, 68(19): 197101. doi: 10.7498/aps.68.20190642
    [13] 张强, 王建元, 罗炳成, 邢辉, 金克新, 陈长乐. La1.3Sr1.7Mn2O7/SrTiO3-Nb异质结的整流和光伏特性. 物理学报, 2016, 65(10): 107301. doi: 10.7498/aps.65.107301
    [14] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究. 物理学报, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [15] 韩典荣, 王璐, 罗成林, 朱兴凤, 戴亚飞. (n, n)-(2n, 0)碳纳米管异质结的扭转力学特性. 物理学报, 2015, 64(10): 106102. doi: 10.7498/aps.64.106102
    [16] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [17] 杨世海, 金克新, 王晶, 罗炳成, 陈长乐. BaTiO3/p-Si异质结的整流特性和光诱导特性的研究. 物理学报, 2013, 62(14): 147305. doi: 10.7498/aps.62.147305
    [18] 张歆, 章晓中, 谭新玉, 于奕, 万蔡华. Al2O3增强的Co2-C98/Al2O3/Si异质结的光伏效应. 物理学报, 2012, 61(14): 147303. doi: 10.7498/aps.61.147303
    [19] 陈鹏, 金克新, 陈长乐, 谭兴毅. La0.88 Te0.12 MnO3/Si异质结的整流和光伏特性研究. 物理学报, 2011, 60(6): 067303. doi: 10.7498/aps.60.067303
    [20] 李 彤, 李驰平, 张 铭, 王 波, 严 辉. La1-xSrxMnO3/TiO2 (x=0.2, 0.15, 0.04)异质pn结的整流特性. 物理学报, 2007, 56(7): 4132-4136. doi: 10.7498/aps.56.4132
计量
  • 文章访问数:  3372
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-05-24
  • 上网日期:  2023-06-20
  • 刊出日期:  2023-08-20

/

返回文章
返回