-
光学测压技术是基于对荧光材料受压强影响的发光特性进行非接触式测量而实现对压强的监测,一直以来都广受欢迎.因此,开发具有高压强灵敏度、高精确性和宽压强适用范围的荧光材料成为重点.本文报道了一种Mn2+基辉石型结构荧光材料(CaZnGe2O6:0.02Mn2+)的光学压强传感性能.在0.33~9.49 GPa范围内,借助光谱移动和荧光强度比两种方法,此材料均体现出较高的测压灵敏度和出色的循环可重复性.随压强改变,基质内不同位点Mn2+的红光与绿光发射中心峰位所达到的最大绝对压强灵敏度Sa(dλ/dP)数值分别为10.47 nm/GPa和4.83 nm/GPa,是红宝石压标(Al2O3:Cr3+)的28.7和13.2倍.相较于传统的单荧光峰传感方式,这种双重荧光发射峰位移动测压法能够更有效地提高测压的精确程度和可靠程度.此外,利用选区光谱积分强度比法计算Mn2+基荧光材料的压强灵敏度尚属首次,得到的最大压强相对灵敏度(Sr)数值为64.28%/GPa,且在极其宽的压强范围内Sr均高于16.06%/GPa.毫无疑问,CaZnGe2O6:0.02Mn2+呈现出极为出色的光学测压性能,证明其在光学压强传感领域具备极大的应用潜力.Optical pressure measurement technology, which is based on non-contact monitoring of pressure by observing the luminescent characteristics of luminescent materials under pressure influence, has always been widely popular. Therefore, the development of luminescent materials with high pressure-sensitivity, high accuracy, and a wide pressure application range has become a key focus. In this paper, the optical pressure sensing performance of a Mn2+-based pyroxene-type luminescent material (CaZnGe2O6:0.02Mn2+) is reported. Within the pressure range of 0.33~9.49 GPa, it demonstrates high sensitivity and excellent cyclic repeatability based on the pressure measurement strategies of both the spectral shift and luminescent intensity ratio. As the pressure increases, the maximum absolute sensitivity (Sa) values (dλ/dP) of the green and red emission positions of Mn2+ at different sites in the matrix reach 10.47 nm/GPa and 4.83 nm/GPa, respectively, which are 28.7 and 13.2 times those of the ruby pressure gauge (Al2O3:Cr3+). Compared to the traditional method that uses a single luminescent peak, this pressure measurement method employing the position shift os dual-luminescent emission can enhance the accuracy and reliability of pressure measurement more effectively. In addition, it is the first time to calculate the pressure sensitivity of Mn2+-based luminescent materials using the ratio of spectral integral intensities in selected areas, and the obtained maximum relative pressure sensitivity (Sr) value is 64.28 %/GPa, with Sr remaining above 16.06 %/GPa throughout a rather wide pressure range. Undoubtedly, CaZnGe2O6:0.02Mn2+ exhibits extremely outstanding optical pressure measurement performance, demonstrating its great application potential in the field of optical pressure sensing.
-
Keywords:
- Manganese Ions /
- Double Perovskite /
- Highly Sensitive /
- Optical Pressure Sensing
-
[1] Guo L L, Zhao Z T, Sui M H, Wang P, Liu B B 2024 Acta Phys. Sin. 73 086102 (in Chinese) [郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰 2024 物理学报 73 086102]
[2] Ye R N, Wang J T, Yang J Y, Wang X C, Lei J C, Zhao W Y, Meng Y F, Xiao G J, Zou B 2025 Chin. Phys. B 34 066204 (in Chinese) [叶润楠, 王敬天, 杨佳毅, 王旭晨, 雷钧策, 赵文雅, 孟雨凡, 肖冠军, 邹勃 2025 中国物理B 34 066204]
[3] Zhang X T, Li C Y, Tian H, Wang X Y, Li Z L, Li Q J 2025 Chin. Phys. B 34 066105 (in Chinese) [张雪婷, 李晨一, 田辉, 王心悦, 李宗伦, 李全军 2025 中国物理B 34 066105]
[4] Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930
[5] Zhao D L, Li S X, Su Y, Qin J J, Xiao G J, Shang Y C, Yin X, Lv P F, Wang F, Yang J Y, Liu Z D, Lan F J, Zeng Q S, Zhang L J, Gao F, Zou B 2025 Nat. Commun. 16 6203
[6] Chen H, Seto T, Wang Y H 2022 Inorg. Chem. Front. 9 1644
[7] Zheng T, Runowski M, Xue J P, Luo L H, Rodríguez-Mendoza U R, Lavin V, Martin I R, Rodriguez-Hernandez P, Munoz A, Du P 2023 Adv. Funct. Mater. 33 2214663
[8] Syassen K 2008 High Press. Res. 28 75
[9] Du P, Xue J P, Gonzlez A M, Luo L H, Wozny P, Rodriguez-Mendoza U R, Lavin V, Runowski M 2025 Chem. Eng. J. 505 159652
[10] Du P, Xue J P, Ma S L, Wozny P, Lavin V, Luo L H, Runowski M 2025 Mater. Horiz. 12 4822
[11] Su K, Mei L F, Liu Z Q, Pan X, Shuai P F, Xie J Y, Ma B, Guo Q F, Lin C J, Chen M C, Peng Z J, Liao L B, Hu W B, Lv G C 2025 Adv. Funct. Mater. 35 2507563
[12] Zheng T, Luo J C, Peng D F, Peng L, Wozny P, Barzowska J, Kaminski M, Mahlik S, Moszczynski J, Soler-Carracedo K, Rivera-Lopez F, Hemmerich H, Runowski M 2024 Adv. Sci. 11 2408686
[13] Wei S, Lyu Z Y, Lu Z, Luo P C, Zhou L H, Sun D S, Tan T X, Shen S D, You H P 2023 Chem. Mater. 35 7125
[14] Zhu M J, Luo J C, Liang T L, Zheng Y T, Li X, Huang Z F, Ren B Y, Zhang X H, Li J W, Zheng Z T, Wu J H, Zhong Y L, Wang Y, Wang C F, Peng D F 2023 Laser Photonics Rev. 17 2300517
[15] Li G X, Li G, Mao Q N, Pei L, Yu H, Liu M J, Chu L, Zhong J S 2022 Chem. Eng. J. 430 132923
[16] Wei G H, Li P L, Li R, Wang Y, He S X, Li J H, Shi Y W, Suo H, Yang Y B, Wang Z J 2023 Adv. Opt. Mater. 11 2301794
[17] Yang F, Yang M T, Liu X T, Yang J P, Wu Z N, Liang X J, Lv C Y, Xiang W D 2023 Adv. Funct. Mater. 33 2303340
[18] Brik M G, Ma C G, Piasecki M, Srivastava A M 2020 Chinese J. Lumin. 41 1011
[19] Wang J, Ma Q Q, Hu X X, Liu H Y, Zheng W, Chen X Y, Yuan Q, Tan W H 2017 ACS Nano 11 8010
[20] Xu Y, Wu S M, Li X L, Wang Z P, Han Y D, Wu J B, Zhang X 2018 Mater. Lett. 210 235
[21] Marciniak L, Kniec K, Elzbieciak-Piecka K, Trejgis K, Stefanska J, Dramicanin M 2022 Coordin. Chem. Rev. 469 214671
[22] Wang M Y, Wu H, Dong W B, Lian J Y, Wang W X, Zhou J Y, Zhang J C 2022 Inorg. Chem. 61 2911
[23] Wang Z D, Xiao Y, Liu B J, Chen K, Shao P S, Chen Z C, Xiong P X, Gan J L, Chen D D 2023 Adv. Opt. Mater. 12 2301796
[24] Xue J P, Runowski M, Soler-Carracedo K,Wozny P, Munoz A, Luo L H, Chen K, Huang Y P, Lavin V, Du P 2025 Adv. Opt. Mater. 13 2402399
[25] Li X, Ding Y, Shao L, Wang Q S, Lv H, Yu Y J, Chen S L 2025 Ceram. Int. 51 39193
[26] Liu C B, Che G B, Xu Z L, Wang Q W 2009 J. Alloy. Compd. 474 250
[27] Lin M C, Gao Z R, Xu C F, Yuan Y, Tang Y, Liu T, Sun L Z 2023 ACS Appl. Opt. Mater. 1 724
[28] Zhou S, Miao X, Bai X, Zhang P, Wang Y F, Yang Y Z, Li S X, Qin W F, Liu W S 2025 Laser Photonics Rev. e01511
[29] Wang W X, Sun Z Y, He X Y, Wei Y D, Zou Z H, Zhang J C, Wang Z F, Zhang Z Y, Wang Y H 2017 J Mater. Chem. C 5 4310
[30] Zheng T, Luo L H, Du P, Lis S, Rodriguez-Mendoza U R, Lavin V, Martin I R, Runowski M 2022 Chem. Eng. J. 443 136414
[31] Rutstein M S, White W B 1971 Am. Mineral. 56, 877
[32] Lambruschi E, Aliatis I, Mantovani L, Tribaudino M, Bersani D, Redhammer G J, Lottici P P 2015 J. Raman Spectrosc. 46 586
[33] Tribaudino M, Aliatis I, Bersani D, Gatta G D, Lambruschi E, Mantovani L, Redhammer G, Lottici P P 2017 J. Raman Spectrosc. 48 1443
[34] Redhammer G J, Tippelt G, Reyer A, Gratzl R, Hiederer A 2017 Acta Cryst. B73 419
[35] Wang Y C, Seto T, Ishigaki K, Uwatoko Y, Xiao G J, Zou B, Li G S, Tang Z B, Li Z B, Wang Y H 2020 Adv. Funct. Mater. 30 2001384
[36] Zheng Z B, Song Y H, Zheng B F, Zhao Y X, Wang Q L, Zhang X T, Zou B, Zou H F 2023 Inorg. Chem. Front. 10 2788
[37] Ming Z Q, Zhao J, Swart H C, Xia Z G 2020 J. Rare Earth. 38 506
[38] Long Z W, Wen Y G, Qiu J B, Wang J, Zhou D C, Zhu C C, Lai J A, Xu X H, Yu X, Wang Q 2019 Chem. Eng. J. 375 122016
[39] Chen S L, Li X, Dong E L, Lv H, Yang X B, Liu R, Liu B B 2019 J. Phys. Chem. C 123 29693
[40] Dai Y X, Ma M H, Qi Y 2021 J. Phys. Chem. C 125 9342
[41] Moura J V B, Ferreira W C, da Silva-Filho J G, Alabarse F G, Freire P T C, Luz-Lima C 2023 Spectrochim. Acta A 299 122871
[42] Chopelas A, Serghiou G 2002 Phys. Chem. Miner. 29 403
[43] Thompson R M, Downs R T 2008 Am. Miner. 93 177
[44] Hofer G, Kuzel J, Scheidl K S, Redhammer G, Miletich R 2015 J. Solid State Chem. 229 188
[45] Luo C L, Wang L R, Mo Q Q, Huang Y J, Gao H, Liu Q H, Song K X, Chu S W, Han Y B, Shi Z F 2025 Laser Photonics Rev. e01271
[46] Zheng B F, Zhang X T, Zhang D, Wang F K, Zheng Z B, Yang X Y, Yang Q, Song Y H, Zou B, Zou H F 2022 Chem. Eng. J. 427 131897
[47] Marciniak L, Wozny P, Szymczak M, Runowski M 2024 Coordin. Chem. Rev. 507 215770
[48] Szymczak M, Runowski M, Lavin V, Marciniak L 2023 Laser Photonics Rev. 17 2200801
[49] Zheng T, Sojka M, Wozny P, Martin I R, Lavin V, Zych E, Lis S, Du P, Luo L H, Runowski M 2022 Adv. Opt. Mater. 10 2201055
[50] Szymczak M, Jaskielewicz J, Runowski M, Xue J P, Mahlik S, Marciniak L 2024 Adv. Funct. Mater. 34 2314068
[51] Szymczak M, Wozny P, Runowski M, Pieprz M, Lavin V, Marciniak L 2023 Chem. Eng. J. 453 139632
计量
- 文章访问数: 24
- PDF下载量: 0
- 被引次数: 0








下载: