搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锰离子掺杂双钙钛矿化合物CaZnGe2O6的高灵敏光学压强传感性能研究

甄珍 蔡安哲 孙博宇 张欢 陈双龙 王秋实 吕航 王月 王春杰 董恩来 李欣

引用本文:
Citation:

锰离子掺杂双钙钛矿化合物CaZnGe2O6的高灵敏光学压强传感性能研究

甄珍, 蔡安哲, 孙博宇, 张欢, 陈双龙, 王秋实, 吕航, 王月, 王春杰, 董恩来, 李欣

Investigation into the Highly Sensitive Optical Pressure Sensing Performance of Mn2+-Doped CaZnGe2O6 Double Perovskite Compound

ZHEN Zhen, CAI Anzhe, SUN Boyu, ZHANG Huan, CHEN Shuanglong, WANG qiushi, LV Hang, WANG Yue, WANG Chunjie, DONG Enlai, LI Xin
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 光学测压技术是基于对荧光材料受压强影响的发光特性进行非接触式测量而实现对压强的监测,一直以来都广受欢迎.因此,开发具有高压强灵敏度、高精确性和宽压强适用范围的荧光材料成为重点.本文报道了一种Mn2+基辉石型结构荧光材料(CaZnGe2O6:0.02Mn2+)的光学压强传感性能.在0.33~9.49 GPa范围内,借助光谱移动和荧光强度比两种方法,此材料均体现出较高的测压灵敏度和出色的循环可重复性.随压强改变,基质内不同位点Mn2+的红光与绿光发射中心峰位所达到的最大绝对压强灵敏度Sadλ/dP)数值分别为10.47 nm/GPa和4.83 nm/GPa,是红宝石压标(Al2O3:Cr3+)的28.7和13.2倍.相较于传统的单荧光峰传感方式,这种双重荧光发射峰位移动测压法能够更有效地提高测压的精确程度和可靠程度.此外,利用选区光谱积分强度比法计算Mn2+基荧光材料的压强灵敏度尚属首次,得到的最大压强相对灵敏度(Sr)数值为64.28%/GPa,且在极其宽的压强范围内Sr均高于16.06%/GPa.毫无疑问,CaZnGe2O6:0.02Mn2+呈现出极为出色的光学测压性能,证明其在光学压强传感领域具备极大的应用潜力.
    Optical pressure measurement technology, which is based on non-contact monitoring of pressure by observing the luminescent characteristics of luminescent materials under pressure influence, has always been widely popular. Therefore, the development of luminescent materials with high pressure-sensitivity, high accuracy, and a wide pressure application range has become a key focus. In this paper, the optical pressure sensing performance of a Mn2+-based pyroxene-type luminescent material (CaZnGe2O6:0.02Mn2+) is reported. Within the pressure range of 0.33~9.49 GPa, it demonstrates high sensitivity and excellent cyclic repeatability based on the pressure measurement strategies of both the spectral shift and luminescent intensity ratio. As the pressure increases, the maximum absolute sensitivity (Sa) values (dλ/dP) of the green and red emission positions of Mn2+ at different sites in the matrix reach 10.47 nm/GPa and 4.83 nm/GPa, respectively, which are 28.7 and 13.2 times those of the ruby pressure gauge (Al2O3:Cr3+). Compared to the traditional method that uses a single luminescent peak, this pressure measurement method employing the position shift os dual-luminescent emission can enhance the accuracy and reliability of pressure measurement more effectively. In addition, it is the first time to calculate the pressure sensitivity of Mn2+-based luminescent materials using the ratio of spectral integral intensities in selected areas, and the obtained maximum relative pressure sensitivity (Sr) value is 64.28 %/GPa, with Sr remaining above 16.06 %/GPa throughout a rather wide pressure range. Undoubtedly, CaZnGe2O6:0.02Mn2+ exhibits extremely outstanding optical pressure measurement performance, demonstrating its great application potential in the field of optical pressure sensing.
  • [1]

    Guo L L, Zhao Z T, Sui M H, Wang P, Liu B B 2024 Acta Phys. Sin. 73 086102 (in Chinese) [郭琳琳, 赵梓彤, 隋明宏, 王鹏, 刘冰冰 2024 物理学报 73 086102]

    [2]

    Ye R N, Wang J T, Yang J Y, Wang X C, Lei J C, Zhao W Y, Meng Y F, Xiao G J, Zou B 2025 Chin. Phys. B 34 066204 (in Chinese) [叶润楠, 王敬天, 杨佳毅, 王旭晨, 雷钧策, 赵文雅, 孟雨凡, 肖冠军, 邹勃 2025 中国物理B 34 066204]

    [3]

    Zhang X T, Li C Y, Tian H, Wang X Y, Li Z L, Li Q J 2025 Chin. Phys. B 34 066105 (in Chinese) [张雪婷, 李晨一, 田辉, 王心悦, 李宗伦, 李全军 2025 中国物理B 34 066105]

    [4]

    Jing X L, Zhou D L, Sun R, Zhang Y, Li Y C, Li X D, Li Q J, Song H W, Liu B B 2021 Adv. Funct. Mater. 31 2100930

    [5]

    Zhao D L, Li S X, Su Y, Qin J J, Xiao G J, Shang Y C, Yin X, Lv P F, Wang F, Yang J Y, Liu Z D, Lan F J, Zeng Q S, Zhang L J, Gao F, Zou B 2025 Nat. Commun. 16 6203

    [6]

    Chen H, Seto T, Wang Y H 2022 Inorg. Chem. Front. 9 1644

    [7]

    Zheng T, Runowski M, Xue J P, Luo L H, Rodríguez-Mendoza U R, Lavin V, Martin I R, Rodriguez-Hernandez P, Munoz A, Du P 2023 Adv. Funct. Mater. 33 2214663

    [8]

    Syassen K 2008 High Press. Res. 28 75

    [9]

    Du P, Xue J P, Gonzlez A M, Luo L H, Wozny P, Rodriguez-Mendoza U R, Lavin V, Runowski M 2025 Chem. Eng. J. 505 159652

    [10]

    Du P, Xue J P, Ma S L, Wozny P, Lavin V, Luo L H, Runowski M 2025 Mater. Horiz. 12 4822

    [11]

    Su K, Mei L F, Liu Z Q, Pan X, Shuai P F, Xie J Y, Ma B, Guo Q F, Lin C J, Chen M C, Peng Z J, Liao L B, Hu W B, Lv G C 2025 Adv. Funct. Mater. 35 2507563

    [12]

    Zheng T, Luo J C, Peng D F, Peng L, Wozny P, Barzowska J, Kaminski M, Mahlik S, Moszczynski J, Soler-Carracedo K, Rivera-Lopez F, Hemmerich H, Runowski M 2024 Adv. Sci. 11 2408686

    [13]

    Wei S, Lyu Z Y, Lu Z, Luo P C, Zhou L H, Sun D S, Tan T X, Shen S D, You H P 2023 Chem. Mater. 35 7125

    [14]

    Zhu M J, Luo J C, Liang T L, Zheng Y T, Li X, Huang Z F, Ren B Y, Zhang X H, Li J W, Zheng Z T, Wu J H, Zhong Y L, Wang Y, Wang C F, Peng D F 2023 Laser Photonics Rev. 17 2300517

    [15]

    Li G X, Li G, Mao Q N, Pei L, Yu H, Liu M J, Chu L, Zhong J S 2022 Chem. Eng. J. 430 132923

    [16]

    Wei G H, Li P L, Li R, Wang Y, He S X, Li J H, Shi Y W, Suo H, Yang Y B, Wang Z J 2023 Adv. Opt. Mater. 11 2301794

    [17]

    Yang F, Yang M T, Liu X T, Yang J P, Wu Z N, Liang X J, Lv C Y, Xiang W D 2023 Adv. Funct. Mater. 33 2303340

    [18]

    Brik M G, Ma C G, Piasecki M, Srivastava A M 2020 Chinese J. Lumin. 41 1011

    [19]

    Wang J, Ma Q Q, Hu X X, Liu H Y, Zheng W, Chen X Y, Yuan Q, Tan W H 2017 ACS Nano 11 8010

    [20]

    Xu Y, Wu S M, Li X L, Wang Z P, Han Y D, Wu J B, Zhang X 2018 Mater. Lett. 210 235

    [21]

    Marciniak L, Kniec K, Elzbieciak-Piecka K, Trejgis K, Stefanska J, Dramicanin M 2022 Coordin. Chem. Rev. 469 214671

    [22]

    Wang M Y, Wu H, Dong W B, Lian J Y, Wang W X, Zhou J Y, Zhang J C 2022 Inorg. Chem. 61 2911

    [23]

    Wang Z D, Xiao Y, Liu B J, Chen K, Shao P S, Chen Z C, Xiong P X, Gan J L, Chen D D 2023 Adv. Opt. Mater. 12 2301796

    [24]

    Xue J P, Runowski M, Soler-Carracedo K,Wozny P, Munoz A, Luo L H, Chen K, Huang Y P, Lavin V, Du P 2025 Adv. Opt. Mater. 13 2402399

    [25]

    Li X, Ding Y, Shao L, Wang Q S, Lv H, Yu Y J, Chen S L 2025 Ceram. Int. 51 39193

    [26]

    Liu C B, Che G B, Xu Z L, Wang Q W 2009 J. Alloy. Compd. 474 250

    [27]

    Lin M C, Gao Z R, Xu C F, Yuan Y, Tang Y, Liu T, Sun L Z 2023 ACS Appl. Opt. Mater. 1 724

    [28]

    Zhou S, Miao X, Bai X, Zhang P, Wang Y F, Yang Y Z, Li S X, Qin W F, Liu W S 2025 Laser Photonics Rev. e01511

    [29]

    Wang W X, Sun Z Y, He X Y, Wei Y D, Zou Z H, Zhang J C, Wang Z F, Zhang Z Y, Wang Y H 2017 J Mater. Chem. C 5 4310

    [30]

    Zheng T, Luo L H, Du P, Lis S, Rodriguez-Mendoza U R, Lavin V, Martin I R, Runowski M 2022 Chem. Eng. J. 443 136414

    [31]

    Rutstein M S, White W B 1971 Am. Mineral. 56, 877

    [32]

    Lambruschi E, Aliatis I, Mantovani L, Tribaudino M, Bersani D, Redhammer G J, Lottici P P 2015 J. Raman Spectrosc. 46 586

    [33]

    Tribaudino M, Aliatis I, Bersani D, Gatta G D, Lambruschi E, Mantovani L, Redhammer G, Lottici P P 2017 J. Raman Spectrosc. 48 1443

    [34]

    Redhammer G J, Tippelt G, Reyer A, Gratzl R, Hiederer A 2017 Acta Cryst. B73 419

    [35]

    Wang Y C, Seto T, Ishigaki K, Uwatoko Y, Xiao G J, Zou B, Li G S, Tang Z B, Li Z B, Wang Y H 2020 Adv. Funct. Mater. 30 2001384

    [36]

    Zheng Z B, Song Y H, Zheng B F, Zhao Y X, Wang Q L, Zhang X T, Zou B, Zou H F 2023 Inorg. Chem. Front. 10 2788

    [37]

    Ming Z Q, Zhao J, Swart H C, Xia Z G 2020 J. Rare Earth. 38 506

    [38]

    Long Z W, Wen Y G, Qiu J B, Wang J, Zhou D C, Zhu C C, Lai J A, Xu X H, Yu X, Wang Q 2019 Chem. Eng. J. 375 122016

    [39]

    Chen S L, Li X, Dong E L, Lv H, Yang X B, Liu R, Liu B B 2019 J. Phys. Chem. C 123 29693

    [40]

    Dai Y X, Ma M H, Qi Y 2021 J. Phys. Chem. C 125 9342

    [41]

    Moura J V B, Ferreira W C, da Silva-Filho J G, Alabarse F G, Freire P T C, Luz-Lima C 2023 Spectrochim. Acta A 299 122871

    [42]

    Chopelas A, Serghiou G 2002 Phys. Chem. Miner. 29 403

    [43]

    Thompson R M, Downs R T 2008 Am. Miner. 93 177

    [44]

    Hofer G, Kuzel J, Scheidl K S, Redhammer G, Miletich R 2015 J. Solid State Chem. 229 188

    [45]

    Luo C L, Wang L R, Mo Q Q, Huang Y J, Gao H, Liu Q H, Song K X, Chu S W, Han Y B, Shi Z F 2025 Laser Photonics Rev. e01271

    [46]

    Zheng B F, Zhang X T, Zhang D, Wang F K, Zheng Z B, Yang X Y, Yang Q, Song Y H, Zou B, Zou H F 2022 Chem. Eng. J. 427 131897

    [47]

    Marciniak L, Wozny P, Szymczak M, Runowski M 2024 Coordin. Chem. Rev. 507 215770

    [48]

    Szymczak M, Runowski M, Lavin V, Marciniak L 2023 Laser Photonics Rev. 17 2200801

    [49]

    Zheng T, Sojka M, Wozny P, Martin I R, Lavin V, Zych E, Lis S, Du P, Luo L H, Runowski M 2022 Adv. Opt. Mater. 10 2201055

    [50]

    Szymczak M, Jaskielewicz J, Runowski M, Xue J P, Mahlik S, Marciniak L 2024 Adv. Funct. Mater. 34 2314068

    [51]

    Szymczak M, Wozny P, Runowski M, Pieprz M, Lavin V, Marciniak L 2023 Chem. Eng. J. 453 139632

  • [1] 班季峰, 李忠辉, 张兴隆, 刘长立, 赵星胜, 周恒为, 蒋小康. Sb3+/Er3+共掺杂Cs2NaGdCl6双钙钛矿中能量传递机制与可调谐发光的研究. 物理学报, doi: 10.7498/aps.75.20251424
    [2] 吴可, 何青芯, 刘海顺. 质子传导增强的CMC-Na/MOF-801/PPY用于高灵敏、快响应的湿度传感. 物理学报, doi: 10.7498/aps.75.20251427
    [3] 韩非, 江舟, 王晨, 周华, 沈向前. 金属纳米图案对钙钛矿电池的光学增强. 物理学报, doi: 10.7498/aps.73.20240607
    [4] 赖伟恩, 邬宗冬, 李力奇, 刘根, 方彦俊. 基于MAPbI3/Graphene/Si复合结构的高灵敏宽带太赫兹调制器. 物理学报, doi: 10.7498/aps.72.20230527
    [5] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性. 物理学报, doi: 10.7498/aps.70.20220186
    [6] 王兴平, 赵刚, 焦康, 陈兵, 阚瑞峰, 刘建国, 马维光. 光学反馈线性腔衰荡光谱技术不确定性研究. 物理学报, doi: 10.7498/aps.71.20220186
    [7] 张鹏, 朴红光, 张英德, 黄焦宏. 钙钛矿锰氧化物的磁相变临界行为及磁热效应研究进展. 物理学报, doi: 10.7498/aps.70.20210097
    [8] 夏文飞, 陈剑锋, 龙利, 李志远. 金纳米双球系统的高灵敏光学传感与其消光系数及局域场增强之关联. 物理学报, doi: 10.7498/aps.70.20210231
    [9] 于鹏, 曹盛, 曾若生, 邹炳锁, 赵家龙. 金属离子掺杂提高全无机钙钛矿纳米晶发光性质的研究进展. 物理学报, doi: 10.7498/aps.69.20200795
    [10] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, doi: 10.7498/aps.69.20200988
    [11] 武力乾, 齐伟华, 李雨辰, 李世强, 李壮志, 唐贵德, 葛兴烁, 丁丽莉. 热处理对钙钛矿锰氧化物La0.95Sr0.05MnO3离子价态和磁结构的影响. 物理学报, doi: 10.7498/aps.65.027501
    [12] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究. 物理学报, doi: 10.7498/aps.63.087503
    [13] 伊丁, 秦伟, 解士杰. 钙钛矿锰氧化物中的极化子研究. 物理学报, doi: 10.7498/aps.61.207101
    [14] 黄覃, 冷逢春, 梁文耀, 董建文, 汪河洲. 光子晶体的相位特性在高灵敏温度传感器中的应用. 物理学报, doi: 10.7498/aps.59.4014
    [15] 肖松青, 谢国锋. 钙钛矿铁电体原子势参数的灵敏度分析及优化. 物理学报, doi: 10.7498/aps.59.4808
    [16] 张瑜, 刘拥军, 刘先锋, 江学范. 双钙钛矿SrKFeWO6的电子结构与磁性. 物理学报, doi: 10.7498/aps.59.3432
    [17] 谈国太, 陈正豪, 章晓中. 钙钛矿锰氧化物La1-xTexMnO3(x=0.04, 0.1)的两类磁电阻现象. 物理学报, doi: 10.7498/aps.54.379
    [18] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, doi: 10.7498/aps.52.1474
    [19] 杨广亮, 鲜于文旭, 千正男, 金汉民. 纳米晶类钙钛矿型锰氧化物导电性的高压研究. 物理学报, doi: 10.7498/aps.49.553
    [20] 陈创天. 晶体电光和非线性光学效应的离子基团理论(Ⅳ)——钙钛矿、钨青铜型、LiNbO3型晶体线性极化率计算. 物理学报, doi: 10.7498/aps.27.41
计量
  • 文章访问数:  24
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-13

/

返回文章
返回