-
应用时域有限差分(FDTD)方法分析目标电磁特性时,需要对目标进行空间离散.当宏观电磁目标包含“无限薄”石墨烯界面时,该界面不能进行纵向剖分,同时界面上存在面电流,使界面上的切向电场不能用常规方法计算.对于含不可纵向剖分石墨烯界面的电磁目标,提出一种等效源电流(Equivalent Source Current,ESC)-时域有限差分方法。将石墨烯界面上的面电流等效为源体电流,从而采用有源Maxwell方程,然后通过中间变量并结合处理色散介质问题的移位算子方法,得到石墨烯界面上切向电场的迭代计算式,最终实现含“无限薄”石墨烯界面目标的FDTD计算.多个算例的计算结果都和解析结果有很高的吻合度,表明该方法是正确有效的.本文方法可以推广应用于含“无限薄”导电色散界面目标电磁特性的数值分析.The finite - difference time - domain (FDTD) modeling of targets with infinitely thin graphene sheets poses a challenge due to the existence of surface current and the inability of longitudinal discretization. When analyzing the electromagnetic properties of targets via FDTD method, spatial discretization of the target is essential. In the case of macroscopic electromagnetic targets that incorporate ‘infinitely thin’ graphene interfaces, this interface cannot be longitudinally partitioned. Moreover, a surface current exists on the interface, rendering the conventional calculation methods for the tangential electric field on the interface inapplicable. To address this issue, we put forward a novel Equivalent Source Current (ESC) approach. The proposed method enables the graphene sheet to retain a two - dimensional structure and be positioned on the surface of the Yee cell during the spatial discretization of the FDTD method(Fig.2). Subsequently, the surface current on the graphene sheet is approximated as a source volume current. Then, the active Maxwell's equations are discretized at the tangential electric - field nodes on the graphene surface(Fig.2, Fig.3), thereby obtaining a modified formula for the electric - field. By introducing intermediate variables and integrating the Shift Operator (SO) method, which is employed to handle issues related to dispersive media, to process the correction formula, an FDTD iterative formula for calculating the tangential electric field at the graphene interface is deduced. This ultimately enables the FDTD calculations for targets with ‘infinitely thin’ graphene sheets. Excellent agreement between our FDTD results and analytical solutions in several numerical examples validates the proposed method. The methodological framework proposed in this study can be generalized and applied to the ‘zero-thickness’ dispersive interfaces with surface current distributions (such as metallic films and two-dimensional transition metal sulfides). This allows for a convenient numerical analysis of the electromagnetic properties of structures incorporating conductive dispersive interfaces.
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666
[2] Geim A K 2009 Science 324 1530
[3] Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese)[成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801]
[4] Liu J T, Huang J H, Xiao W B, Hu A R, Wang J H 2012 Acta Phys. Sin. 61 177202 (in Chinese) [刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉 2012 物理学报 61 177202]
[5] Liang S J, Sun S, Ang L K 2013 Carbon 61 294
[6] Song Y, Wu H C 2013 J. Phys.: Condens. Matter 25 355301
[7] Eric S M, Luis E F F T 2012 Phys. Rev. B 86 125449
[8] Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801 (in Chinese)[胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801]
[9] Kim H, Kim Y D, Wu T, Cao Q, Herman I P, Hone J, Guo J, Shepard K L 2022 Sci. Adv. 8 eabj1742
[10] Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780
[11] Limosani F, Tessore F, Forni A, Lembo A, Di Carlo G, Albanese C, Bellucci S, Tagliatesta P 2023 Materials 16 5427
[12] Fu M X, Zhang Y 2013 Journal of electronic science and technology 11 352
[13] Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780
[14] Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304
[15] Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese)[张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803]
[16] Lovat G 2012 IEEE Transactions on electromagnetic compatibility 54 101
[17] Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) p13 (in Chinese) [葛德彪, 闫玉波2011 电磁波时域有限差分法(第三版) (西安: 西安电子科技大学出版社) 第13 页]
[18] Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]
[19] Wei B, Ge D B, Wang F 2008 Acta Phys. Sin. 57 6290(in Chinese) [魏兵, 葛德彪, 王飞 2008 物理学报 57 6290]
[20] Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356(in Chinese) [魏兵, 葛德彪, 王飞 2009 物理学报 58 6356]
[21] Li L Q, Shi Y X, Wang F, Wei B 2012 Acta Phys. Sin. 61 125201(in Chinese) [李林茜, 石雁祥, 王飞, 魏兵 2008 物理学报 61 125201]
[22] Wang F, Wei B Acta Phys. Sin. 2019, 68 244101(in Chinese) [王飞, 魏兵 2019 物理学报 68 244101]
[23] Giampiero L, Rodolfo A 2015 IEEE Transactions on nanotechnology 14 681
[24] Zhuang W Z, Li R X, Liang J R, Jia Y J 2021 Applied Optics 60 1903
计量
- 文章访问数: 19
- PDF下载量: 0
- 被引次数: 0








下载: