搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含“无限薄”石墨烯界面目标电磁特性分析的FDTD方法

王飞 魏兵 李林茜

引用本文:
Citation:

含“无限薄”石墨烯界面目标电磁特性分析的FDTD方法

王飞, 魏兵, 李林茜

A Novel Algorithm in FDTD analysis of Target Containing ‘Infinitely Thin’ Graphene Sheet

WANG Fei, WEI Bing, LI Linqian
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 应用时域有限差分(FDTD)方法分析目标电磁特性时,需要对目标进行空间离散.当宏观电磁目标包含“无限薄”石墨烯界面时,该界面不能进行纵向剖分,同时界面上存在面电流,使界面上的切向电场不能用常规方法计算.对于含不可纵向剖分石墨烯界面的电磁目标,提出一种等效源电流(Equivalent Source Current,ESC)-时域有限差分方法。将石墨烯界面上的面电流等效为源体电流,从而采用有源Maxwell方程,然后通过中间变量并结合处理色散介质问题的移位算子方法,得到石墨烯界面上切向电场的迭代计算式,最终实现含“无限薄”石墨烯界面目标的FDTD计算.多个算例的计算结果都和解析结果有很高的吻合度,表明该方法是正确有效的.本文方法可以推广应用于含“无限薄”导电色散界面目标电磁特性的数值分析.
    The finite - difference time - domain (FDTD) modeling of targets with infinitely thin graphene sheets poses a challenge due to the existence of surface current and the inability of longitudinal discretization. When analyzing the electromagnetic properties of targets via FDTD method, spatial discretization of the target is essential. In the case of macroscopic electromagnetic targets that incorporate ‘infinitely thin’ graphene interfaces, this interface cannot be longitudinally partitioned. Moreover, a surface current exists on the interface, rendering the conventional calculation methods for the tangential electric field on the interface inapplicable. To address this issue, we put forward a novel Equivalent Source Current (ESC) approach. The proposed method enables the graphene sheet to retain a two - dimensional structure and be positioned on the surface of the Yee cell during the spatial discretization of the FDTD method(Fig.2). Subsequently, the surface current on the graphene sheet is approximated as a source volume current. Then, the active Maxwell's equations are discretized at the tangential electric - field nodes on the graphene surface(Fig.2, Fig.3), thereby obtaining a modified formula for the electric - field. By introducing intermediate variables and integrating the Shift Operator (SO) method, which is employed to handle issues related to dispersive media, to process the correction formula, an FDTD iterative formula for calculating the tangential electric field at the graphene interface is deduced. This ultimately enables the FDTD calculations for targets with ‘infinitely thin’ graphene sheets. Excellent agreement between our FDTD results and analytical solutions in several numerical examples validates the proposed method. The methodological framework proposed in this study can be generalized and applied to the ‘zero-thickness’ dispersive interfaces with surface current distributions (such as metallic films and two-dimensional transition metal sulfides). This allows for a convenient numerical analysis of the electromagnetic properties of structures incorporating conductive dispersive interfaces.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsove A A 2004 Science 306 666

    [2]

    Geim A K 2009 Science 324 1530

    [3]

    Cheng Y X, Xu H, Yu H F, Huang L Q, Gu Z C, Chen Y F, He L H, Chen Z Q, Hou H L 2025 Acta Phys. Sin. 74 067801 (in Chinese)[成昱轩, 许辉, 于鸿飞, 黄林琴, 谷志超, 陈玉峰, 贺龙辉, 陈智全, 侯海良 2025 物理学报 74 067801]

    [4]

    Liu J T, Huang J H, Xiao W B, Hu A R, Wang J H 2012 Acta Phys. Sin. 61 177202 (in Chinese) [刘江涛, 黄接辉, 肖文波, 胡爱荣, 王建辉 2012 物理学报 61 177202]

    [5]

    Liang S J, Sun S, Ang L K 2013 Carbon 61 294

    [6]

    Song Y, Wu H C 2013 J. Phys.: Condens. Matter 25 355301

    [7]

    Eric S M, Luis E F F T 2012 Phys. Rev. B 86 125449

    [8]

    Hu S N, Li D Q, Zhan J, Gao E D, Wang Q, Liu N L, Nie G Z 2025 Acta Phys. Sin. 74 097801 (in Chinese)[胡树南, 李德琼, 詹杰, 高恩多, 王琦, 刘南柳, 聂国政 2025 物理学报 74 097801]

    [9]

    Kim H, Kim Y D, Wu T, Cao Q, Herman I P, Hone J, Guo J, Shepard K L 2022 Sci. Adv. 8 eabj1742

    [10]

    Sensale-Rodriguez B, Yan R, Kelly M 2012 Nature Commun. 3 780

    [11]

    Limosani F, Tessore F, Forni A, Lembo A, Di Carlo G, Albanese C, Bellucci S, Tagliatesta P 2023 Materials 16 5427

    [12]

    Fu M X, Zhang Y 2013 Journal of electronic science and technology 11 352

    [13]

    Rodriguez B S, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Jena D, Liu L, Xing H G 2012 Nature Communications 3 780

    [14]

    Zuo Z G, Wang P, Ling F R, Liu J S, Yao J Q 2013 Chin. Phys. B 22 097304

    [15]

    Zhang Y P, Zhang H Y, Yin Y H, Liu L Y, Zhang X, Gao Y, Zhang H Y 2012 Acta Phys. Sin. 61 047803 (in Chinese)[张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云 2012 物理学报 61 047803]

    [16]

    Lovat G 2012 IEEE Transactions on electromagnetic compatibility 54 101

    [17]

    Ge D B, Yan Y B 2011 Finite-Difference Time-Domain Method for Electromagnetic Waves (3rd Ed.) (Xi’an: Xidian University Press) p13 (in Chinese) [葛德彪, 闫玉波2011 电磁波时域有限差分法(第三版) (西安: 西安电子科技大学出版社) 第13 页]

    [18]

    Ge D B, Wu Y L, Zhu X Q 2003 Chin. J. Radio Sci. 18 359 (in Chinese) [葛德彪, 吴跃丽, 朱湘琴 2003 电波科学学报 18 359]

    [19]

    Wei B, Ge D B, Wang F 2008 Acta Phys. Sin. 57 6290(in Chinese) [魏兵, 葛德彪, 王飞 2008 物理学报 57 6290]

    [20]

    Wang F, Ge D B, Wei B 2009 Acta Phys. Sin. 58 6356(in Chinese) [魏兵, 葛德彪, 王飞 2009 物理学报 58 6356]

    [21]

    Li L Q, Shi Y X, Wang F, Wei B 2012 Acta Phys. Sin. 61 125201(in Chinese) [李林茜, 石雁祥, 王飞, 魏兵 2008 物理学报 61 125201]

    [22]

    Wang F, Wei B Acta Phys. Sin. 2019, 68 244101(in Chinese) [王飞, 魏兵 2019 物理学报 68 244101]

    [23]

    Giampiero L, Rodolfo A 2015 IEEE Transactions on nanotechnology 14 681

    [24]

    Zhuang W Z, Li R X, Liang J R, Jia Y J 2021 Applied Optics 60 1903

  • [1] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光. 物理学报, doi: 10.7498/aps.71.20211613
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, doi: 10.7498/aps.71.20212203
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, doi: 10.7498/aps.70.20201095
    [4] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, doi: 10.7498/aps.70.20201796
    [5] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, doi: 10.7498/aps.69.20191645
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, doi: 10.7498/aps.68.20190279
    [7] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, doi: 10.7498/aps.66.218502
    [8] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, doi: 10.7498/aps.66.216802
    [9] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, doi: 10.7498/aps.64.237801
    [10] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, doi: 10.7498/aps.64.077305
    [11] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, doi: 10.7498/aps.63.154704
    [12] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, doi: 10.7498/aps.63.057803
    [13] 张雪芹, 王均宏, 李铮. 微带阵列天线的时域散射特性. 物理学报, doi: 10.7498/aps.60.051301
    [14] 赵冬梅, 施宇蕾, 周庆莉, 李磊, 孙会娟, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, doi: 10.7498/aps.60.093301
    [15] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响. 物理学报, doi: 10.7498/aps.60.019503
    [16] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, doi: 10.7498/aps.59.3408
    [17] 刘海亮, 张同意, 朱少岚, 范文慧. 有限厚度金属狭缝对太赫兹脉冲的整形和滤波. 物理学报, doi: 10.7498/aps.58.3658
    [18] 王飞, 葛德彪, 魏兵. 磁化铁氧体电磁散射的移位算子FDTD分析. 物理学报, doi: 10.7498/aps.58.6356
    [19] 杨光杰, 孔凡敏, 李 康, 梅良模. 金属介质在时域有限差分中的几种处理方法. 物理学报, doi: 10.7498/aps.56.4252
    [20] 柏宁丰, 刘 旭, 肖金标, 张明德, 孙小菡. 光子晶体平面波导与脊波导高效耦合技术的研究. 物理学报, doi: 10.7498/aps.54.4933
计量
  • 文章访问数:  19
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-15

/

返回文章
返回