-
微通道传热传质相关基础问题在新材料、微电子、航空航天等工程领域有着重要的科研需求。本文针对微圆管内质量运输特性预测问题开展了数值方法研究及实验测量验证。采用一维近似处理方法简化可压缩流动方程组,建立了适用于微圆管质量运输特性预测的数值计算方法,结合范诺线方程及实验方法对数值计算方法的正确性和物理计算模型的有效性进行了检验,并详细分析了预测误差来源。主要得到以下结论:依据范诺线参数比理论结果与数值计算结果证明了数值计算方法的正确性。对比典型驱动压差条件下微圆管出口工况的计算与纹影结果,证明了数值方法关于流动壅塞预测的合理性。在质量流量预测方面,全层流阶段质量流量预测误差在3%以内,全湍流状态下的预测误差在8%以内,而当微圆管内流动包含层流至湍流的过渡过程时,预测误差则提高至29%,这是由于给定的转捩雷诺数以及摩擦系数计算公式的误差引入而造成的。The fundamental issues related to heat and mass transfer in microchannels have significant scientific research demands in various engineering fields, including new materials, microelectronics, and aerospace. This paper addresses the problem of predicting mass transport characteristics within microtubes by developing numerical methods, conducting experimental measurements for validation, and analyzing prediction errors.
A one-dimensional approximation method is employed to simplify the compressible flow equations, and a fourth-order Runge-Kutta numerical method is used to iteratively solve the governing equations. A theoretical calculation method suitable for predicting mass transport characteristics in microtubes is established. This method can calculate various flow parameters along the length of the microtube and can handle different flow conditions, such as static pressure matching at the outlet or flow choking.
Subsequently, by comparing the numerical calculation results with the theoretical results of the Fanuo line parameter ratio, the correctness of the numerical calculation method has been verified. Also, Schlieren experiments and a self-designed mass flow measurement device are used to qualitatively and quantitatively verify the effectiveness of physical computing models. Under typical driving pressure differences, the qualitative agreement between the calculated and schlieren results for the outlet conditions of the microtube demonstrate the rationality of the numerical method in terms of static pressure matching and flow choking calculations. Regarding mass flow prediction, comparisons between theoretical calculations and experimental measurements under different driving pressures revealed that when the flow inside the microtube is in a fully laminar state, the mass flow prediction error is within 3%. When the flow is fully turbulent, the prediction error is within 8%. However, when the flow involves a transition from laminar to turbulent, the prediction error increases to 29%.
During the numerical calculations, the transition Reynolds number and the turbulent friction factor formula are set as input parameters based on existing research results. However, analysis of the Reynolds numbers along the length of the microtube and the average friction factors under different conditions show that the actual transition Reynolds number in the microtube is lower than the value set in the numerical calculations. Additionally, there is a significant discrepancy between the calculated turbulent friction factor and the actual value. Moreover, during the transition from laminar to turbulent flow, the friction factor should increase continuously with the Reynolds number, but the numerical calculations directly used the turbulent friction factor to represent this process. These factors are the main reasons for the larger mass flow prediction errors when the flow involves transition and turbulence.-
Keywords:
- One-dimensional processing method /
- Mass transfer /
- Numerical prediction /
- Friction coefficient /
-
[1] Berg H R, Seldam C A, Gulik P S 1993 J.Fluid.Mech. 246 1
[2] Lorenzini M, Morini G L, Salvigni S 2010 Int.J.Therm. 49 248
[3] Xin Fang, Xiangan Yue, Weiqing An, Xuegang Feng 2019 Microfluid.Nanofluidics.23 5
[4] O Reynolds 1883 Philos.Trans. 174 935
[5] Kawashima D, Yamada T, Hong C, Asako Y 2016 J.Mech.Eng. 230 420
[6] ANSI N14.5 2022. American National Standard for Radioactive Materials Leak-age Teats on Packages for Shipment.
[7] Anderson B L, Carlson R W, Fischer L E 1994 Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Lawrence Livermore National Lab. (LLNL), Livermore, CA, United States
[8] Chen C S, Kuo W J 2004 Numer.Heat.Transfer. 45 85
[9] Asako Y, Nakayama K, Shinozuka T 2005 Int.J.Heat.Mass. Transfer. 48 4985
[10] Asako Y, Pi T, Turner S E, Faghri M 2003 Int.J.Heat.Mass.Transfer. 46 3041
[11] Murakami S, Toyoda K, Asako Y 2021 J.Fluids.Eng. 134 111301
[12] Hong C, Asako Y, Suzuki K, Faghri M 2012 Numer.Heat.Transfer.61 163
[13] Hong C, Tanaka G, Asako Y, Katanoda H 2018 Int.J.Heat.Mass.Transfer. 121 187
[14] Lijo V, Kim H D, Setoguchi T 2012 Int.J.Heat.Mass.Transfer. 55 701
[15] WANG H, XING J, SUN Z, GU H, SUN X, WANG Y 2023 AEST. 57 74
[16] Agrawal A, Kushwaha H M, R S Jadhav J 2020 Microscale Flow and Heat Transfer (New York: Springer)
[17] Shome B 2023 Phys.Fluids. 35
[18] Yovanovich M M, Khan W A 2020 J.Thermophys.Heat.Trans. 34 792
[19] Valougeorgis D 2007 Phys.Fluids. 19 091702
[20] Barber R W, Emerson D R 2006 HTE. 27 3
[21] Bykov N Y, Zakharov V V 2022 Phys.Fluids. 34 057106
[22] Wang X, Li Y, Gao Y, Gao C, Fu W 2023 Aerospace. 10 126
[23] Xu K, Huang J C 2010 J. Comput. Phys. 229 7747
[24] Guo Z, Xu K, Wang R 2013 Phys. Rev. E. 88 033305.
[25] Hong C, Yamada T, Asako Y, Faghri M 2012 Int.J.Heat.Mass. Transfer. 55 4397
[26] Celata G P, Lorenzini M, Morini G L, Zummo G 2009 Int.J.Heat.Fluid.Flow. 30 814
[27] Rehman D, Barattini D, Hong C, Morini G L 2021 Exp.Fluids. 62 1
[28] Rehman D, Morini G L, Hong C 2019 Micromachines. 10 1
[29] Hong C, Asako Y, Morini G L, Faghri M 2024Exp.Therm.Fluid.Sci. 155 111196
[30] Brackbill T, Kandlikar S 2007 Proceedings of the International Conference on Nanochannels, Microchannels and Minichannels, June 18-20, Puebla, Mexico 4272 509
[31] Eckhardt B, Schneider T M, Hof B, Westerweel J 2007 Annu.Rev.Fluid.Mech. 39 468
[32] Morini G L, Lorenzini M, Salvigni S 2006 Exp.Therm.Fluid.Sci. 30 733
[33] Du D, Li Z, Guo Z 2000 Sci.China.Technol.Sci. 43 171
[34] Sonnad J R, Goudar C T 2006 J.Hydraul.Eng, 132 863
[35] Zucrow M J, Hoffman J D (translated by Wang R Y) 1984 Gas Dynamics (Vol.1) (Beijing: National Defense Industry Press) (in Chinese) [左克罗, 霍夫曼著 (王汝涌译) 气体动力学. 上册. 北京:国防工业出版社]
[36] Tang G H, Li Z, He Y L, Tao W Q 2007 Int.J.Heat.Mass.Transfer. 50 2282
[37] Lorenzini M, Morini G L, Salvigni S 2010 Int.J.Therm.Sci. 49 248
[38] Moody L F 1944 Transactions of the ASME. 66 671
[39] Avci A, Karagoz I 2019 Eur.J.Mech.B.Fluids.78 182.
计量
- 文章访问数: 99
- PDF下载量: 1
- 被引次数: 0