搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维处理法的微圆管质量运输特性预测方法

郑文鹏 陆小革 赵玉新 张臻 易仕和

引用本文:
Citation:

基于一维处理法的微圆管质量运输特性预测方法

郑文鹏, 陆小革, 赵玉新, 张臻, 易仕和

One-dimensional approximation-based method of predicting mass transfer characteristics in microtubes

ZHENG Wenpeng, LU Xiaoge, ZHAO Yuxin, ZHANG Zhen, YI Shihe
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 微通道传热传质相关基础问题在新材料、微电子、航空航天等工程领域具有重要的科研需求. 本文针对微圆管内质量运输特性预测问题开展了数值方法研究及实验测量验证. 采用一维近似处理方法简化可压缩流动方程组, 建立了适用于微圆管质量运输特性预测的数值计算方法, 结合范诺线方程及实验方法对数值计算方法的正确性和物理计算模型的有效性进行检验, 并详细分析预测误差来源. 结果表明, 依据范诺线参数比理论结果与数值计算结果证明了数值计算方法的正确性. 对比典型驱动压差条件下微圆管出口工况的计算与纹影结果, 证明了数值方法关于流动壅塞预测的合理性. 在质量流量预测方面, 全层流阶段质量流量预测误差在3%以内, 全湍流状态下的预测误差在8%以内, 而当微圆管内流动包含层流至湍流的过渡过程时, 预测误差则提高至29%, 这是由于给定的转捩雷诺数以及摩擦系数计算公式的误差引入而造成的.
    The fundamental issues related to heat and mass transfer in microchannels have significant research needs in various engineering fields, such as new materials, microelectronics, and aerospace. This paper addresses the problem of predicting mass transport characteristics within microtubes by developing numerical methods, conducting experimental measurements for validation, and analyzing prediction errors.A one-dimensional approximation method is employed to simplify the compressible flow equations, and a fourth-order Runge-Kutta numerical method is also used to iteratively solve the governing equations. A theoretical calculation method suitable for predicting mass transport characteristics in microtubes is established. This method can calculate various flow parameters along the length of the microtube and can handle different flow conditions, such as static pressure matching or flow choking at the outlet.Subsequently, by comparing the numerical calculation results with the theoretical results of the Fanuo line parameter ratio, the correctness of the numerical calculation method is verified. Also, Schlieren experiments and a self-designed mass flow measurement device are used to qualitatively and quantitatively verify the effectiveness of physical computing models. Under typical driving pressure differences, the qualitative agreement between the calculated and schlieren results for the outlet conditions of the microtube demonstrate the rationality of the numerical method in terms of static pressure matching and flow choking calculations. Regarding mass flow prediction, comparisons between theoretical calculations and experimental measurements under different driving pressures reveal that when the flow inside the microtube is in a fully laminar state, the mass flow prediction error is within 3%. When the flow is fully turbulent, the prediction error is within 8%. However, when the flow involves a transition from laminar to turbulent, the prediction error increases to 29%.During the numerical calculations, based on existing research results, the formula for transition Reynolds number and the turbulent friction factor are set as input parameters . However, the analyses of the Reynolds numbers along the length of the microtube and the average friction factors under different conditions show that the actual transition Reynolds number in the microtube is lower than the value set in the numerical calculations. Additionally, there is a significant discrepancy between the calculated turbulent friction factor and the actual value. Moreover, during the transition from laminar to turbulent flow, the friction factor should increase continuously with the Reynolds number increasing, but the in the numerical calculations the turbulent friction factor is directly used to represent this process. These factors are the main reasons for the larger mass flow prediction errors when the flow involves transition and turbulence.
  • 图 1  计算模型示意图

    Fig. 1.  Schematic diagram of calculation model.

    图 2  数值计算流程图

    Fig. 2.  Numerical calculation flow chart.

    图 3  数值计算方法与范诺线方程求解p1/p2对比

    Fig. 3.  Comparison of numerical calculation methods and van Gogh line equations for p1/p2.

    图 4  实验设置示意图

    Fig. 4.  Schematic diagram of experimental setup.

    图 5  石英管截面的电子显微镜图片

    Fig. 5.  Electron microscopy image of quartz tube cross-section.

    图 6  典型实验中流量数据曲线

    Fig. 6.  Typical flow data curve in the experiment.

    图 7  纹影光路图

    Fig. 7.  Light path diagram of Schlieren.

    图 8  成像系统分辨率测试结果

    Fig. 8.  Imaging system resolution test results.

    图 9  Case 1直管内沿程Ma, p, T分布

    Fig. 9.  Distribution of Ma, p, and T along the tube of Case1.

    图 10  Case 2直管内沿程Ma, p, T分布

    Fig. 10.  Distribution of Ma, p, and T along the tube of Case2.

    图 11  纹影实验结果

    Fig. 11.  Experiment results of Schlieren.

    图 12  数值计算与实验测量质量流量结果对比 (a) 系列 1 (d = 100 μm); (b) 系列 2 (d = 200 μm)

    Fig. 12.  Comparison of mass flow rate results of numerical calculation and experimental measurement: (a) Series 1 (d = 100 μm); (b) Series 2 (d = 200 μm).

    图 13  不同滞止压力时的平均摩擦系数 (a) d = 100 μm; (b) d = 200 μm

    Fig. 13.  Average friction coefficient at different stagnation pressures: (a) d = 100 μm; (b) d = 200 μm.

    图 14  不同滞止压力时的沿程雷诺数 (a) d = 100 μm; (b) d = 200 μm

    Fig. 14.  Reynolds numbers along the tube at different stagnation pressures: (a) d = 100 μm; (b) d = 200 μm.

    表 1  工况条件

    Table 1.  Operating conditions.

    CaseP0/kPaT0 /Kpe /kPad/μmL/mm
    1256298106200120
    2706298106200120
    下载: 导出CSV

    表 2  计算与实验条件

    Table 2.  Calculation and experimental conditions.

    SeriesP0 /kPaT0 /Kpe /kPad/μmL/mm
    1256—706298106100120
    2156—706298106200120
    下载: 导出CSV
  • [1]

    van den Berg H R, ten Seldam C A, van den Gulik P S 1993 J. Fluid. Mech. 246 1Google Scholar

    [2]

    Lorenzini M, Morini G L, Salvigni S 2010 Int. J. Therm. 49 248Google Scholar

    [3]

    Xin Fang, Xiangan Yue, Weiqing An, Xuegang Feng 2019 Microfluid. Nanofluidics. 23 5Google Scholar

    [4]

    O Reynolds 1883 Philos. Trans. 174 935Google Scholar

    [5]

    Kawashima D, Yamada T, Hong C, Asako Y 2016 J. Mech. Eng. 230 420

    [6]

    ANSI N14.5 2022. American National Standard for Radioactive Materials Leak -age Teats on Packages for Shipment

    [7]

    Anderson B L, Carlson R W, Fischer L E 1994 Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Lawrence Livermore National Lab. (LLNL), Livermore, CA, United States

    [8]

    Chen C S, Kuo W J 2004 Numer. Heat. Transfer. 45 85Google Scholar

    [9]

    Asako Y, Nakayama K, Shinozuka T 2005 Int. J. Heat. Mass. Transfer. 48 4985Google Scholar

    [10]

    Asako Y, Pi T, Turner S E, Faghri M 2003 Int. J. Heat. Mass. Transfer. 46 3041Google Scholar

    [11]

    Murakami S, Toyoda K, Asako Y 2021 J. Fluids. Eng. 134 111301

    [12]

    Hong C, Asako Y, Suzuki K, Faghri M 2012 Numer. Heat. Transfer. 61 163Google Scholar

    [13]

    Hong C, Tanaka G, Asako Y, Katanoda H 2018 Int. J. Heat. Mass. Transfer. 121 187Google Scholar

    [14]

    Lijo V, Kim H D, Setoguchi T 2012 Int. J. Heat. Mass. Transfer. 55 701Google Scholar

    [15]

    Wang H, Xing J, Sun Z, Gu H, Sun X, Wang Y 2023 AEST 57 74

    [16]

    Agrawal A, Kushwaha H M, Jadhav R S 2020 Microscale Flow and Heat Transfer (New York: Springer

    [17]

    Shome B 2023 Phys. Fluids 35

    [18]

    Yovanovich M M, Khan W A 2020 J. Thermophys. Heat. Trans. 34 792Google Scholar

    [19]

    Valougeorgis D 2007 Phys. Fluids 19 091702Google Scholar

    [20]

    Barber R W, Emerson D R 2006 HTE 27 3

    [21]

    Bykov N Y, Zakharov V V 2022 Phys. Fluids. 34 057106Google Scholar

    [22]

    Wang X D, Li Y, Gao Y, Gao C G, Fu W C 2023 Aerospace 10 126Google Scholar

    [23]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747Google Scholar

    [24]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305Google Scholar

    [25]

    Hong C, Yamada T, Asako Y, Faghri M 2012 Int. J. Heat. Mass. Transfer. 55 4397Google Scholar

    [26]

    Celata G P, Lorenzini M, Morini G L, Zummo G 2009 Int. J. Heat. Fluid. Flow. 30 814Google Scholar

    [27]

    Rehman D, Barattini D, Hong C, Morini G L 2021 Exp. Fluids 62 52Google Scholar

    [28]

    Rehman D, Morini G L, Hong C 2019 Micromachines 10 171Google Scholar

    [29]

    Hong C, Asako Y, Morini G L, Faghri M 2024 Exp. Therm. Fluid. Sci. 155 111196Google Scholar

    [30]

    Brackbill T, Kandlikar S 2007 Proceedings of the International Conference on Nanochannels, Microchannels and Minichannels Puebla, Mexico, June 18-20, 2007 p509

    [31]

    Eckhardt B, Schneider T M, Hof B, Westerweel J 2007 Annu. Rev. Fluid. Mech. 39 468

    [32]

    Morini G L, Lorenzini M, Salvigni S 2006 Exp. Therm. Fluid. Sci. 30 733Google Scholar

    [33]

    Du D, Li Z, Guo Z 2000 Sci. China. Technol. Sci. 43 171Google Scholar

    [34]

    Sonnad J R, Goudar C T 2006 J. Hydraul. Eng 132 863Google Scholar

    [35]

    左克罗, 霍夫曼著 (王汝涌, 译) 气体动力学(上册) (北京: 国防工业出版社)

    Zucrow M J, Hoffman J D (translated by Wang R Y) 1984 Gas Dynamics (Vol. 1) (Beijing: National Defense Industry Press

    [36]

    Tang G H, Li Z, He Y L, Tao W Q 2007 Int. J. Heat. Mass. Transfer. 50 2282Google Scholar

    [37]

    Lorenzini M, Morini G L, Salvigni S 2010 Int. J. Therm. Sci. 49 248Google Scholar

    [38]

    Moody L F 1944 T. ASME 66 671

    [39]

    Avci A, Karagoz I 2019 Eur. J. Mech. B. Fluids 78 182Google Scholar

  • [1] 崔子纯, 杨莫涵, 阮晓鹏, 范晓丽, 周峰, 刘维民. 高通量计算二维材料界面摩擦. 物理学报, doi: 10.7498/aps.72.20221676
    [2] 孙梓源, 王元震, 刘悦. 预测HL-2A托卡马克台基结构的MHD稳定性数值研究. 物理学报, doi: 10.7498/aps.71.20221098
    [3] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究. 物理学报, doi: 10.7498/aps.71.20212387
    [4] 艾晋芳, 解军, 胡国辉. 零质量射流作用下红细胞在微管道中变形的数值模拟. 物理学报, doi: 10.7498/aps.69.20200971
    [5] 唐富明, 刘凯, 杨溢, 屠倩, 王凤, 王哲, 廖青. 基于图形处理器加速数值求解三维含时薛定谔方程. 物理学报, doi: 10.7498/aps.69.20200700
    [6] 刘龙, 夏智勋, 黄利亚, 马立坤, 那旭东. 镁颗粒-空气混合物一维稳态爆震波特性数值模拟. 物理学报, doi: 10.7498/aps.68.20190974
    [7] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, doi: 10.7498/aps.68.20190495
    [8] 郑麟, 莫松平, 李玉秀, 陈颖, 徐进良. 薄层剪切二元颗粒分离过程动力学特性分析. 物理学报, doi: 10.7498/aps.68.20190322
    [9] 李菁田, 王建录, 张邦强, 荣曦明, 宁西京. 一种预测材料蠕变速率的新模型. 物理学报, doi: 10.7498/aps.63.028101
    [10] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, doi: 10.7498/aps.63.150505
    [11] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, doi: 10.7498/aps.63.174501
    [12] 殷鹏飞, 张蓉, 熊江涛, 李京龙. 搅拌摩擦焊准稳态热力耦合过程数值模拟研究. 物理学报, doi: 10.7498/aps.62.018102
    [13] 韩亮, 宁涛, 刘德连, 何亮. 氩离子轰击对四面体非晶碳膜内应力和摩擦系数影响的研究. 物理学报, doi: 10.7498/aps.61.176801
    [14] 龚中良, 黄平. 基于非连续能量耗散的滑动摩擦系数计算模型. 物理学报, doi: 10.7498/aps.60.024601
    [15] 韩亮, 杨立, 杨拉毛草, 王炎武, 赵玉清. 磁过滤器电流对非晶碳薄膜摩擦学特性影响的研究. 物理学报, doi: 10.7498/aps.60.046802
    [16] 韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清. 高能氮离子轰击对四面体非晶碳膜的表面改性和摩擦系数影响的研究. 物理学报, doi: 10.7498/aps.60.066804
    [17] 陈杰, 鲁习文. 舰船感应磁场预测的一种新方法. 物理学报, doi: 10.7498/aps.59.239
    [18] 龚博致, 张秉坚. 水中自然超空泡机理及减阻效应的非平衡分子动力学研究. 物理学报, doi: 10.7498/aps.58.1504
    [19] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟. 物理学报, doi: 10.7498/aps.55.4974
    [20] 温激鸿, 王 刚, 刘耀宗, 郁殿龙. 基于集中质量法的一维声子晶体弹性波带隙计算. 物理学报, doi: 10.7498/aps.53.3384
计量
  • 文章访问数:  264
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-13
  • 修回日期:  2025-02-22
  • 上网日期:  2025-02-27

/

返回文章
返回