搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属表面几何缺陷微细结构对微喷射特性的影响

赵信文 李欣竹 王学军 宋萍 张汉钊 吴强

引用本文:
Citation:

金属表面几何缺陷微细结构对微喷射特性的影响

赵信文, 李欣竹, 王学军, 宋萍, 张汉钊, 吴强

Effects of surface groove micro-structure on ejection from shocked metal surface

Zhao Xin-Wen, Li Xin-Zhu, Wang Xue-Jun, Song Ping, Zhang Han-Zhao, Wu Qiang
PDF
导出引用
  • 基于光滑粒子流体动力学方法, 分别采用实测样品几何缺陷模型和简化V形沟槽模型对铅的微喷射过程进行了模拟. 重点分析了金属表面几何缺陷微细结构对微喷射特性的影响, 并将数值计算结果与相应的实验测量值进行对比. 结果表明, 基于实测样品几何缺陷模型计算的最快喷射速度和累积喷射量与实验测量结果符合得很好. 进一步研究发现, 在实测样品几何缺陷诱导的微喷射过程中存在“二次汇聚喷射”现象, 与单次喷射相比, 该过程会诱导产生更高的喷射速度并显著影响微喷物的空间密度分布. 这说明除了受扰动波长、深度影响外,表面几何缺陷微细结构也是影响金属微喷射过程的重要因素.
    When a shock wave releases from a metal-vacuum interface, some high velocity metal particles will be ejected from the metal surface which generally produce some tiny grooves on the metal surface. This phenomenon is often called the “micro-ejecta”. In this paper, we numerically investigate the effect of the micro-structures of these tiny grooves on the property of the micro-ejecta. To verify the numerical simulation model, a strict Pb micro-ejecta experiment is carried out, where the breakout pressure is about 40 GPa and the Pb target surface roughness is Ra1.6. The dynamic processes of the micro-ejection caused by the real surface groove of experimental target and simplified isosceles groove (both have a depth of 5 μm and wavelength of 75 μm), are respectively simulated by a two-dimensional smooth particle hydrodynamics method, and the effects of surface groove micro-structure on the micro-ejecta properties are examined. The simulation results of the tip velocity and accumulated mass, obtained from the real surface groove model, are in good agreement with the corresponding experimental results measured via DISAR and Asay foil, implying that the numerical result is exact. The tip velocity and accumulated mass caused by the real surface groove are much larger than those caused by the simplified isosceles groove, and a second ejection phenomenon is found in the micro-ejecta process from the real surface groove model. The process can produce some faster ejecta than a single ejecta process and influence the density distribution of the micro-ejection. It indicates that the micro-ejecta process can also be affected by the micro-structure of the metal surface groove, besides perturbation wavelength and surface groove depth.
    [1]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J. Appl. Phys. 113 024905

    [2]

    Meyer K A, Blewett P J 1972 Phys. Fluids 15 753

    [3]

    Han C S 1989 Chin. J. High Press. Phys. 3 234 (in Chinese) [韩长生 1989 高压物理学报 3 234]

    [4]

    Georgievskaya A, Raevsky V A 2012 AIP Conf. Proc. 1426 1007

    [5]

    Walsh J M, Shreffler R G, Willing F J 1953 J. Appl. Phys. 24 349

    [6]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [7]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [8]

    Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508

    [9]

    Buttler W T, Zellner M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R 2007 J. Appl. Phys. 101 063547

    [10]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [11]

    Monfared S K, Oró D M, Grover M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [12]

    Zellner M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102

    [13]

    Zellner M B, Byers M, Dimonte G, Hammerberg J E, Germann T C, Rigg P A, Buttler P A 2009 9th International Conference on the Mechanical and Physical Behavior of materials under Dynamic Loading Brussels, Belgium, September 7-11, 2009 p89

    [14]

    Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zellner M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921

    [15]

    Zellner M B, Vogan McNeil W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stenvens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [16]

    Zellner M B, Vogan McNeil W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Tyrley W D, Buttler W T 2008 J. Appl. Phys. 103 083521

    [17]

    Dimonte G, Terrones G, Cherne F J, Germann T C, Dupont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [18]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Liu C, Qin C S, Feng Q J, Wang P 2009 Chin. J. Comput. Phys. 26 275 (in Chinese) [刘超, 秦承森, 冯其京, 王裴 2009 计算物理 26 275]

    [21]

    Durand O, Soulard L 2013 J. Appl. Phys. 114 194902

    [22]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [23]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景林, 陈栋泉 2002 物理学报 51 2386]

    [24]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: a meshfree particle methods (Singapore: World Scientific) pp315-317

    [25]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) pp25-29 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第25-29页]

    [26]

    Tan H 2007 Introduction to Experimental Shocked-Wave Physics (Beijing: National Defense Industry Press) pp113, 114, 188-190 (in Chinese) [谭华 2007 实验冲击波物理导引 (北京: 国防工业出版社) 第113, 114, 188-190页]

    [27]

    Ma Y, Wang X S, Li X Z, Zhang H Z, Hu S L, Li J B, Chen H, Wen J D 2006 Chin. J. High Press. Phys. 20 207 (in Chinese) [马云, 汪小松, 李欣竹, 张汉钊, 胡绍楼, 李加波, 陈宏, 翁继东 2006 高压物理学报 20 207]

  • [1]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J. Appl. Phys. 113 024905

    [2]

    Meyer K A, Blewett P J 1972 Phys. Fluids 15 753

    [3]

    Han C S 1989 Chin. J. High Press. Phys. 3 234 (in Chinese) [韩长生 1989 高压物理学报 3 234]

    [4]

    Georgievskaya A, Raevsky V A 2012 AIP Conf. Proc. 1426 1007

    [5]

    Walsh J M, Shreffler R G, Willing F J 1953 J. Appl. Phys. 24 349

    [6]

    Asay J R, Mix L P, Perry F C 1976 Appl. Phys. Lett. 29 284

    [7]

    Asay J R 1978 J. Appl. Phys. 49 6173

    [8]

    Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A, Stevens G D, Turley W D, Veeser L R, Buttler W T 2005 J. Appl. Phys. 98 113508

    [9]

    Buttler W T, Zellner M B, Olson R T, Rigg P A, Hixson R S, Hammerberg J E, Obst A W, Payton J R 2007 J. Appl. Phys. 101 063547

    [10]

    Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L, Buttler W T 2007 J. Appl. Phys. 102 013522

    [11]

    Monfared S K, Oró D M, Grover M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [12]

    Zellner M B, Buttler W T 2008 Appl. Phys. Lett. 93 114102

    [13]

    Zellner M B, Byers M, Dimonte G, Hammerberg J E, Germann T C, Rigg P A, Buttler P A 2009 9th International Conference on the Mechanical and Physical Behavior of materials under Dynamic Loading Brussels, Belgium, September 7-11, 2009 p89

    [14]

    Buttler W T, Hixson R S, King N S P, Olson R T, Rigg P A, Zellner M B, Routley N, Rimmer A 2007 Appl. Phys. Lett. 90 151921

    [15]

    Zellner M B, Vogan McNeil W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stenvens G D, Turley W D, Veeser L, Buttler W T 2008 J. Appl. Phys. 103 123502

    [16]

    Zellner M B, Vogan McNeil W, Gray G T, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Tyrley W D, Buttler W T 2008 J. Appl. Phys. 103 083521

    [17]

    Dimonte G, Terrones G, Cherne F J, Germann T C, Dupont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [18]

    Wang P, Qin C S, Zhang S D, Liu C 2004 Chin. J. High Press. Phys. 18 149 (in Chinese) [王裴, 秦承森, 张树道, 刘超 2004 高压物理学报 18 149]

    [19]

    Wang P, Shao J L, Qin C S 2012 Acta Phys. Sin. 61 234701 (in Chinese) [王裴, 邵建立, 秦承森 2012 物理学报 61 234701]

    [20]

    Liu C, Qin C S, Feng Q J, Wang P 2009 Chin. J. Comput. Phys. 26 275 (in Chinese) [刘超, 秦承森, 冯其京, 王裴 2009 计算物理 26 275]

    [21]

    Durand O, Soulard L 2013 J. Appl. Phys. 114 194902

    [22]

    Germann T C, Hammerberg J E, Holian B L 2004 AIP Conference Proceedings 706 285

    [23]

    Chen J, Jing F Q, Zhang J L, Chen D Q 2002 Acta Phys. Sin. 51 2386 (in Chinese) [陈军, 经福谦, 张景林, 陈栋泉 2002 物理学报 51 2386]

    [24]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: a meshfree particle methods (Singapore: World Scientific) pp315-317

    [25]

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) pp25-29 (in Chinese) [经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第25-29页]

    [26]

    Tan H 2007 Introduction to Experimental Shocked-Wave Physics (Beijing: National Defense Industry Press) pp113, 114, 188-190 (in Chinese) [谭华 2007 实验冲击波物理导引 (北京: 国防工业出版社) 第113, 114, 188-190页]

    [27]

    Ma Y, Wang X S, Li X Z, Zhang H Z, Hu S L, Li J B, Chen H, Wen J D 2006 Chin. J. High Press. Phys. 20 207 (in Chinese) [马云, 汪小松, 李欣竹, 张汉钊, 胡绍楼, 李加波, 陈宏, 翁继东 2006 高压物理学报 20 207]

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟. 物理学报, 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [3] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [4] 李维勤, 郝杰, 张海波. 高能电子辐照绝缘厚样品的表面电位动态特性. 物理学报, 2015, 64(8): 086801. doi: 10.7498/aps.64.086801
    [5] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [6] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟. 物理学报, 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [7] 刘颖刚, 车伏龙, 贾振安, 傅海威, 王宏亮, 邵敏. 微纳光纤布拉格光栅折射率传感特性研究. 物理学报, 2013, 62(10): 104218. doi: 10.7498/aps.62.104218
    [8] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [9] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验. 物理学报, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [10] 王裴, 孙海权, 邵建立, 秦承森, 李欣竹. 微喷颗粒与气体混合过程的数值模拟研究. 物理学报, 2012, 61(23): 234703. doi: 10.7498/aps.61.234703
    [11] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究. 物理学报, 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [12] 蔡利兵, 王建国. 介质表面高功率微波击穿中释气现象的数值模拟研究. 物理学报, 2011, 60(2): 025217. doi: 10.7498/aps.60.025217
    [13] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [14] 花金荣, 祖小涛, 李莉, 向霞, 陈猛, 蒋晓东, 袁晓东, 郑万国. 熔石英亚表面三维Hertz锥形划痕附近光强分布的数值模拟. 物理学报, 2010, 59(4): 2519-2524. doi: 10.7498/aps.59.2519
    [15] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [16] 邓峰, 赵正予, 石润, 张援农. 中低纬电离层加热大尺度场向不均匀体的二维数值模拟. 物理学报, 2009, 58(10): 7382-7391. doi: 10.7498/aps.58.7382
    [17] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [19] 朱昌盛, 王智平, 荆 涛, 肖荣振. 二元合金微观偏析的相场法数值模拟. 物理学报, 2006, 55(3): 1502-1507. doi: 10.7498/aps.55.1502
    [20] 陈军, 经福谦, 张景琳, 陈栋泉. 冲击作用下金属表面微喷射的分子动力学模拟. 物理学报, 2002, 51(10): 2386-2392. doi: 10.7498/aps.51.2386
计量
  • 文章访问数:  6289
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-24
  • 修回日期:  2014-12-11
  • 刊出日期:  2015-06-05

/

返回文章
返回