搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺Yb硅酸盐玻璃的热漂白性能研究

熊中龙 吴妍 景锐平 马冲 龙蔚辉 张超军 程永进

引用本文:
Citation:

掺Yb硅酸盐玻璃的热漂白性能研究

熊中龙, 吴妍, 景锐平, 马冲, 龙蔚辉, 张超军, 程永进

Performance of Yb-doped silicate glass with thermal bleaching

Xiong Zhong-Long, Wu Yan, Jing Rui-Ping, Ma Chong, Long Wei-Hui, Zhang Chao-Jun, Cheng Yong-Jin
PDF
导出引用
  • 采用传统高温熔融法制备了掺Yb硅酸盐玻璃, 玻璃组成为 60SiO2-12Al2O3-28CaO-1.0 mol%Yb2O3. 将玻璃分成两组, 一组经总剂量3 kGy的Co60辐射源辐射, 另一组做空白对照. 然后测试了玻璃未辐射、辐射后及热漂白后的吸收谱和近红外发光谱. 实验结果表明: 一定的热处理会使得玻璃在辐射过程中产生的色心缺陷发生分解, 即辐射后的玻璃在300900 nm波段的吸收系数显著地降低了, 在400 nm处未经辐射、经3 kGy辐射以及热漂白后的玻璃吸收系数分别是0.93, 2.9, 1.89 cm-1. 另外, 玻璃的近红外发光强度明显增强, 在1028 nm处未经辐射、经3 kGy辐射以及热漂白后的玻璃近红外发光相对强度分别是588, 261, 436, 从而极大地改善了玻璃的光学性能. 所以一定的热处理可以使辐射后的玻璃产生热漂白的现象. 研究结果为进一步发展抗辐射玻璃材料提供了新的实验依据.
    A series of Yb-doped silicate glasses with the composition of 60 SiO2-12 Al2O3-28 CaO-1.0 mol% Yb2O3 are prepared by a conventional melting method under normal processing conditions. These glasses are divided into two groups. One group experienced a total dose 3 kGy radiation under a Co60 radiation source, and the other group is pristine. The absorption spectra as well as the near-infrared (NIR) luminescence spectra of the glasses (pristine Ybc, irradiated Ybc, heat bleaching Ybc) are investigated. Theoretically, effects of gamma-ray radiation exposure would lead to the formation of color centers in the glass samples. Such radiation-induced color center defects cause a strong broad optical absorption band with widths from 300 to 900 nm, and its tail extends into the NIR region. In this experiment the absorption coefficient of the glass is measured by a ultraviolet-visible spectrophotometer named Lambda35, and the NIR spectrum is measured by a Zolix grating spectrometer named Omni-. Furthermore, a special test system is set up to test the NIR spectrum of the glass at high temperatures. Experimental results show that the absorption coefficient of the glass after irradiation increases significantly in the visible region. The absorption coefficients of the glasses (pristine Ybc, irradiated Ybc) at 400 nm are 0.93 cm-1 and 2.9 cm-1 respectively. With a certain temperature treatment, the absorption coefficient of the irradiated glass is 1.89 cm-1 at 400 nm. Compared with the absorption coefficient obtained before, it is decreased by 35%. The NIR intensities of the glasses (pristine Ybc, irradiated Ybc, heat bleaching Ybc) are 588, 261 and 436 (arbitrary units) respectively. It may be due to the color center defects produced by radiation, that have decomposed under a certain temperature treatment. As a result, this method greatly improve the optical performance of the glass. So thermal bleaching phenomenon will happen in the irradiated glass that experiences in a certain temperature treatment. Finally, results obtained in this paper may provide a theoretical basis for studying the anti-radiation of optical glasses.
      通信作者: 程永进, yjcheng@cug.edu.cn
    • 基金项目: 中国地质大学(武汉)新青年教师科研启动基金(批准号: 007-G1323511558)资助的课题.
      Corresponding author: Cheng Yong-Jin, yjcheng@cug.edu.cn
    • Funds: Project supported by the Priming Scientific Research Foundation for the Junior Teachers in China University of Geosciences (Wuhan) (Grant No. 007-G1323511558).
    [1]

    Brooks C, Di Teodoro F 2005 Opt. Express 13 8999

    [2]

    Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019

    [3]

    Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910

    [4]

    Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618

    [5]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum. Elect. 33 1049

    [6]

    Tortech B, Ouerdane Y, Girard S, Marcandella C, Robin T 2009 J. Non-Cyst. Solids. 355 1085

    [7]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C 2008 IEEE J. Quantum. Elect. 44 581

    [8]

    Griscom D L 2013 Phys. Res. Int. 2013 379041

    [9]

    Girard S, Kuhnhenn J A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [10]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523

    [11]

    Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15

    [12]

    Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825

    [13]

    Girard S, Tortech B, Regnier E, Uffelen M Van, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426

    [14]

    Tortech B, Gusarov A, Van Uffelen M, Bisutti J, Girard S, Ouerdane Y, Boukenter A, Meunier J P, Berghmans F, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2598

    [15]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A 2009 IEEE Trans. Nucl. Sci. 56 3293

    [16]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [17]

    Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657

    [18]

    Griscom D L 2004 J. Non-Cyst. Solids. 349 139

    [19]

    Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204

    [20]

    Griscom D L 2006 J. Non-Cyst. Solids 352 2601

    [21]

    Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352

    [22]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE 6873 6873F

    [23]

    Zhang H C, Liu H, Qiang W Q, Li X J, He S Y 2012 Acta Phys. Sin. 61 034213 (in Chinese) [张红晨, 刘海, 乔文强, 李兴冀, 何世禹 2012 物理学报 61 034213]

    [24]

    Carlson C G, Keister K E, Dragic P D, Croteau A, Eden J G 2010 J. Opt. Soc. Am. B 27 2087

    [25]

    Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [26]

    Stroud J S 1962 J. Chem. Phys. 37 836

    [27]

    Stroud J S 1965 J. Chem. Phys. 43 2442

  • [1]

    Brooks C, Di Teodoro F 2005 Opt. Express 13 8999

    [2]

    Griscom D L, Gingerich M E, Friebele E J 1993 Phys. Rev. Lett. 71 1019

    [3]

    Friebele E J, Schultz P C, Gingerich M E 1980 Appl. Opt. 19 2910

    [4]

    Fox B P, Simmons-Potter K, Thomes W J, Meister D C, Bambha R P, Kliner D A V 2010 IEEE Trans. Nucl. Sci. 57 1618

    [5]

    Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum. Elect. 33 1049

    [6]

    Tortech B, Ouerdane Y, Girard S, Marcandella C, Robin T 2009 J. Non-Cyst. Solids. 355 1085

    [7]

    Fox B P, Schneider Z V, Simmons-Potter K, Thomes W J, Meister D C 2008 IEEE J. Quantum. Elect. 44 581

    [8]

    Griscom D L 2013 Phys. Res. Int. 2013 379041

    [9]

    Girard S, Kuhnhenn J A, Brichard B, Uffelen M V, Ouerdane Y, Boukenter A, Marcandella C 2013 IEEE Trans. Nucl. Sci. 60 2015

    [10]

    Griscom D L, Gingerich M E, Friebele E J 1994 IEEE Trans. Nucl. Sci. 41 523

    [11]

    Skuja L, Hirano M, Hosono H 2005 Phys. Status Solidi C 2 15

    [12]

    Raghavachari K, Ricci D, Pacchioni G 2002 J. Chem. Phys. 116 825

    [13]

    Girard S, Tortech B, Regnier E, Uffelen M Van, Gusarov A, Ouerdane Y 2007 IEEE Trans. Nucl. Sci. 54 2426

    [14]

    Tortech B, Gusarov A, Van Uffelen M, Bisutti J, Girard S, Ouerdane Y, Boukenter A, Meunier J P, Berghmans F, Thienpont H 2007 IEEE Trans. Nucl. Sci. 54 2598

    [15]

    Girard S, Ouerdane Y, Tortech B, Marcandella C, Robin T, Cadier B, Baggio J, Paillet P, Ferlet-Cavrois V, Boukenter A 2009 IEEE Trans. Nucl. Sci. 56 3293

    [16]

    Griscom D L 1991 J. Ceram. Soc. Jpn. 99 923

    [17]

    Raghavachari K, Pacchioni G 2001 J. Chem. Phys. 114 4657

    [18]

    Griscom D L 2004 J. Non-Cyst. Solids. 349 139

    [19]

    Sasajima Y, Tanimura K 2003 Phys. Rev. B 68 014204

    [20]

    Griscom D L 2006 J. Non-Cyst. Solids 352 2601

    [21]

    Engholm M, Norin L, Berg D 2007 Opt. Lett. 32 3352

    [22]

    Fox B P, Simmons-Potter K, Simmons J H, Thomes W J, Bambha R P, Kliner D A V 2008 Proc. SPIE 6873 6873F

    [23]

    Zhang H C, Liu H, Qiang W Q, Li X J, He S Y 2012 Acta Phys. Sin. 61 034213 (in Chinese) [张红晨, 刘海, 乔文强, 李兴冀, 何世禹 2012 物理学报 61 034213]

    [24]

    Carlson C G, Keister K E, Dragic P D, Croteau A, Eden J G 2010 J. Opt. Soc. Am. B 27 2087

    [25]

    Jiang H, Chen B X, Fu C S, Sui G R, Mamoru I 2010 Acta Phys. Sin. 59 7782 (in Chinese) [姜辉, 陈抱雪, 傅长松, 隋国荣, 矶守 2010 物理学报 59 7782]

    [26]

    Stroud J S 1962 J. Chem. Phys. 37 836

    [27]

    Stroud J S 1965 J. Chem. Phys. 43 2442

  • [1] 马文君, 由芳田, 彭洪尚, 黄世华. 小粒径同质/异质壳层结构NaGdF4:3%Nd3+纳米颗粒的近红外发光特性. 物理学报, 2017, 66(10): 107801. doi: 10.7498/aps.66.107801
    [2] 吴坚, 李兴文, 李沫, 杨泽锋, 史宗谦, 贾申利, 邱爱慈. AlK壳层等离子体辐射谱模型的比对. 物理学报, 2015, 64(20): 205201. doi: 10.7498/aps.64.205201
    [3] 张磊, 岳昊, 李梅, 王帅, 米雪玉. 拥堵疏散的行人拥挤力仿真研究. 物理学报, 2015, 64(6): 060505. doi: 10.7498/aps.64.060505
    [4] 吴天娇, 黄衍堂, 马靖, 黄婧, 黄玉, 张培进, 郭长磊. 掺Yb3+ 磷硅酸盐微球腔发光特性的探究. 物理学报, 2014, 63(21): 217805. doi: 10.7498/aps.63.217805
    [5] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [6] 李晋华, 王召巴, 王志斌, 张敏娟, 曹俊卿. 氧气A带吸收系数的温度依赖关系研究. 物理学报, 2014, 63(21): 214204. doi: 10.7498/aps.63.214204
    [7] 余阳, 刘自军, 陈乔乔, 戴能利, 李进延, 杨旅云. Dy3+掺杂硼硅酸盐玻璃的发光特性. 物理学报, 2013, 62(1): 017804. doi: 10.7498/aps.62.017804
    [8] 刘军芳, 苏良碧, 徐军. Bi2O3-B2O3-BaO玻璃的制备及其近红外发光性能的研究. 物理学报, 2013, 62(3): 037804. doi: 10.7498/aps.62.037804
    [9] 李永进, 宋志国, 李臣, 万荣华, 邱建备, 杨正文, 尹兆益, 王雪, 王齐, 周大成, 杨勇. 结构自还原效应对铋掺碱土金属硅磷铝硼玻璃超宽带近红外发光的影响. 物理学报, 2013, 62(11): 117801. doi: 10.7498/aps.62.117801
    [10] 盛于邦, 杨旅云, 栾怀训, 刘自军, 李进延, 戴能利. 辐照对掺Er硅酸盐玻璃吸收和发光特性的影响. 物理学报, 2012, 61(11): 116301. doi: 10.7498/aps.61.116301
    [11] 刘军芳, 苏良碧, 唐慧丽, 徐军. 掺铋离子BaO-B2O3玻璃的制备及其近红外发光性能的研究. 物理学报, 2012, 61(12): 127806. doi: 10.7498/aps.61.127806
    [12] 周大成, 刘志亮, 宋志国, 杨正文, 何禧佳, 王荣飞, 焦清, 邱建备. 铋离子掺杂RO-Al2O3-SiO2玻璃近红外超宽带发光性质. 物理学报, 2012, 61(12): 127802. doi: 10.7498/aps.61.127802
    [13] 周朋, 苏良碧, 李红军, 喻军, 郑丽和, 杨秋红, 徐军. 掺铋BaF2晶体的制备及其近红外发光研究. 物理学报, 2010, 59(4): 2827-2830. doi: 10.7498/aps.59.2827
    [14] 李九生, 李向军. 玉米油光学参数的太赫兹波精确测定研究. 物理学报, 2009, 58(8): 5805-5809. doi: 10.7498/aps.58.5805
    [15] 延凤平, 王琳, 魏淮, 傅永军, 简伟, 郑凯, 毛向桥, 李坚, 刘利松, 彭健, 简水生. 石英基掺Yb3+光纤中Al3+共掺特性的研究. 物理学报, 2009, 58(3): 1793-1797. doi: 10.7498/aps.58.1793
    [16] 哈斯乌力吉, 吕志伟, 公 胜, 何伟明, 林殿阳, 张 伟. 受激布里渊散射新介质——全氟胺的研究. 物理学报, 2008, 57(10): 6360-6364. doi: 10.7498/aps.57.6360
    [17] 李善锋, 苗 壮, 彭 扬, 张庆瑜. 掺Yb硼硅酸盐玻璃的光学特性及其双光子合作上转换荧光. 物理学报, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [18] 李善锋, 张庆瑜. Er/Yb共掺硅酸盐玻璃的光致发光. 物理学报, 2005, 54(11): 5462-5467. doi: 10.7498/aps.54.5462
    [19] 胡 颖, 王晓红, 郭澜涛, 张存林, 刘海波, 张希成. 植物油和动物脂肪在THz波段的吸收和色散. 物理学报, 2005, 54(9): 4124-4128. doi: 10.7498/aps.54.4124
    [20] 周拥华, 张义门, 张玉明, 孟祥志. 6H-SiC pn结紫外光探测器的模拟与分析. 物理学报, 2004, 53(11): 3710-3715. doi: 10.7498/aps.53.3710
计量
  • 文章访问数:  4677
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-08
  • 修回日期:  2015-10-30
  • 刊出日期:  2016-02-05

/

返回文章
返回