搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用光反馈多模激光器结合滤波器产生平坦混沌

李锟影 李璞 郭晓敏 郭龑强 张建国 刘义铭 徐兵杰 王云才

引用本文:
Citation:

利用光反馈多模激光器结合滤波器产生平坦混沌

李锟影, 李璞, 郭晓敏, 郭龑强, 张建国, 刘义铭, 徐兵杰, 王云才

Flat chaos generated by optical feedback multi-mode laser with filter

Li Kun-Ying, Li Pu, Guo Xiao-Min, Guo Yan-Qiang, Zhang Jian-Guo, Liu Yi-Ming, Xu Bing-Jie, Wang Yun-Cai
PDF
HTML
导出引用
  • 提出了一种利用多模激光器结合滤波器产生频谱平坦、无低频能量缺失的宽带混沌信号产生. 实验分析和对比了光反馈法布里-珀罗混沌半导体激光器滤波前后的多模及单模信号的频谱特性. 结果显示, 相较于多模混沌信号, 单模混沌信号的低频部分能量提升了25 dB, 实现了3 dB带宽为6 GHz的平坦混沌产生. 进一步理论研究表明, 单模混沌信号低频成分能量获得显著提升的物理本质在于多模激光器模式竞争.
    Optical chaos has a wide range of applications in communications, such as secure communication, high-resolution lidar ranging, optical time domain reflectometer, and high-rate physical random bit generator. In recent years, external-cavity feedback semiconductor lasers (ECLs) are the most common chaotic laser generation systems due to their characteristics of wide bandwidth, large amplitude, and simple structure, and the dynamic characteristics of chaotic signals have attracted much attention. However, limited by the relaxation oscillation of the laser, the energy of the chaotic signal directly generated by ECL is mainly concentrated at high relaxation oscillation frequency. Thus, the low-frequency component encounters the problem of energy loss. In practical applications, the signal detection/acquisition device usually responds to a 3-dB low-pass filtering characteristic. Therefore, the available effective bandwidth of the chaotic signal should actually be 3-dB bandwidth. The lack of low-frequency components will limit the energy utilization rate of chaotic signals and restrict the relevant performances of chaotic applications (such as reliability and transmission of chaotic secure communication, randomness and generation rate of physical random bits, measurement accuracy and range of lidar ranging or optical time-domain reflectometer). In the paper, we propose a broadband chaos generation scheme with simple structure and losing no low-frequency components. Specifically, we experimentally analyze the radio frequency (RF) spectra of the single-mode and the multi-mode output from an optical feedback Fabry-Perot (FP) semiconductor laser after and before filtering. The experimental results show that comparing with the multi-mode chaotic signal, the low-frequency energy of the single-mode chaotic spectrum is enhanced by 25 dB, and the 3-dB bandwidth of the single-mode chaotic signal can reach 6 GHz. Further theoretical analysis demonstrates that the enhancement of low-frequency component in the single-mode chaotic signal is caused by the mode-competing in multi-mode laser. It is concluded that this method can well solve the problem of low-frequency energy loss in conventional optical feedback chaotic systems, and is beneficial to improving the energy utilization rate of chaotic signals, which is of great significance for improving the performance of chaotic secure communication, random bit generation, lidar ranging, optical time domain reflectometer, and other relevant applications.
      通信作者: 李璞, lipu8603@126.com
    • 基金项目: 国家自然科学基金(批准号: 61775158, 61731014, 61671316, 61875147, 61771439)、国家密码局“十三五”国家密码发展基金(批准号: MMJJ20170127)、中国博士后科学基金(批准号: 2018M630283)、山西省高等学校优秀青年学术带头人支持计划和上海市科委重点实验室项目(批准号: SKLSFO2018-03)资助的课题.
      Corresponding author: Li Pu, lipu8603@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775158, 61731014, 61671316, 61875147, 61771439), the National Cryptography Development Fund, China (Grant No. MMJJ20170127), the China Postdoctoral Science Foundation (Grant No. 2018M630283), the Program for the Top Young Academic Leaders of High Learning Institutions of Shanxi, China, and the Science and Technology Commission of Shanghai Municipal (STCSM), China (Grant No. SKLSFO2018-03).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [2]

    Lin F L, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991Google Scholar

    [3]

    Al-Suhail, G A, Tahir, F R, Abd, M H, Pham, V T, Fortuna L 2018 Commun. Nonlinear Sci. Numer. Simul. 57 80Google Scholar

    [4]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636Google Scholar

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728Google Scholar

    [6]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58Google Scholar

    [7]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360Google Scholar

    [8]

    唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509Google Scholar

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509Google Scholar

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452Google Scholar

    [10]

    Li N Q, Kim B, Chizhevsky V N, Loequet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634Google Scholar

    [11]

    Quay C H L, Maxwell I Z, Hudgings J A 2001 J. Appl. Phys. 90 5856Google Scholar

    [12]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [13]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan Li, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [14]

    Li N Q, Pan W, Locquet A, Chizhevsky V N, Citrin, D S 2015 IEEE J. Sel. Top. Quantum Electron. 21 1Google Scholar

    [15]

    Al-Bayati B M, Ahmad A K, Al-Naimee K A M 2018 J. Opt. Soc. Am. B 35 918Google Scholar

    [16]

    Huang H M, Lin L C, Chen C Y, Arsenijevic D, Bimberg D, Lin F Y, Grillot F 2018 Opt. Express 26 1743Google Scholar

    [17]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [18]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 531Google Scholar

    [19]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112Google Scholar

    [20]

    Buldu J M, Garcia-Ojalvo J, Torrent M C 2005 IEEE J. Quantum Electron. 41 164Google Scholar

    [21]

    Yang Q, Wu Z M, Wu G J, Xia G Q 2008 Opt. Commun. 281 5025Google Scholar

  • 图 1  基于光反馈FP激光器混沌频谱特性分析实验装置(FP-LD, 法布里-珀罗激光二极管; PC, 偏振控制器; VOA, 可调光衰减器; FM, 光纤反射镜; EDFA, 掺铒光纤放大器; BPF, 可调光滤波器; PD, 光电探测器; ESA, 频谱仪; OSA, 光谱仪)

    Fig. 1.  Experimental setup for the RF spectrum analysis of optical feedback FP laser (FP-LD, Fabry-Perot laser diode; PC, polarization controller; VOA, variable optical attenuator; FM, fiber mirror; EDFA, erbium-doped fiber amplifier; BPF, optical bandpass filter; PD, photodetector; ESA, electrical spectrum analyzer; OSA, optical spectrum analyzer).

    图 2  多模混沌激光特性实验结果 (a)光谱; (b)频谱

    Fig. 2.  Characteristics of the multi-mode chaos: (a) Optical spectrum; (b) RF spectrum.

    图 3  m = –1, 0, +1模式下的单模混沌信号特性实验结果 (a1)—(a3)光谱; (b1)—(b3)频谱

    Fig. 3.  Characteristics of single-mode chaotic signals (m = –1, 0, +1): (a1)−(a3) Optical spectra; (b1)−(b3) RF spectra.

    图 4  多纵模光反馈FP激光器数值仿真结果 (a) 光谱(M = 15); (b) 频谱

    Fig. 4.  Numerical results of multi-mode FP-LD with optical feedback: (a) Optical spectrum (M = 15); (b) power spectrum.

    图 5  光反馈多模激光器在3个模式(m = –1, 0, +1)下单模混沌信号的模拟结果 (a1)—(a3) 频谱; (b1)—(b3) 时序; (c1)—(c3) 互相关函数

    Fig. 5.  Simulation results of single-mode chaotic signals (m = –1, 0, +1): (a1)−(a3) Power spectra; (b1)−(b3) time series; (c1)−(c3) cross-correlations.

    表 1  光反馈FP激光器仿真参数

    Table 1.  Simulation parameters of FP-LD with optical feedback.

    参数 符号 参考值
    模式总数目 M 15
    线宽增强因子 α 3.5
    内腔损耗系数 γ 0.283 ps–1
    载流子损耗系数 γe 6.21 × 10-4 ps–1
    归一化电流系数 C 1.5
    内腔环行时间 τ 7.3 ps
    增益峰值频率 ωc $2{\text{π}} \times 193.7$ THz
    增益宽度 Δωg $2{\text{π}} \times 10$ THz
    增益饱和系数 s 1 × 10–7
    微分增益系数 gc 3.2 × 10–9
    透明载流子数 N0 1.25 × 108
    反馈系数 kt 0.020 ps–1
    反馈延时 τt 2 ns
    自发辐射率 β 5 ps–1
    下载: 导出CSV
  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 438 343Google Scholar

    [2]

    Lin F L, Liu J M 2004 IEEE J. Sel. Top. Quantum Electron. 10 991Google Scholar

    [3]

    Al-Suhail, G A, Tahir, F R, Abd, M H, Pham, V T, Fortuna L 2018 Commun. Nonlinear Sci. Numer. Simul. 57 80Google Scholar

    [4]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636Google Scholar

    [5]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728Google Scholar

    [6]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58Google Scholar

    [7]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360Google Scholar

    [8]

    唐曦, 吴加贵, 夏光琼, 吴正茂 2011 物理学报 60 110509Google Scholar

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509Google Scholar

    [9]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452Google Scholar

    [10]

    Li N Q, Kim B, Chizhevsky V N, Loequet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634Google Scholar

    [11]

    Quay C H L, Maxwell I Z, Hudgings J A 2001 J. Appl. Phys. 90 5856Google Scholar

    [12]

    Rontani D, Locquet A, Sciamanna M, Citrin D S 2007 Opt. Lett. 32 2960Google Scholar

    [13]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan Li, Wu Z M 2010 Opt. Express 18 6661Google Scholar

    [14]

    Li N Q, Pan W, Locquet A, Chizhevsky V N, Citrin, D S 2015 IEEE J. Sel. Top. Quantum Electron. 21 1Google Scholar

    [15]

    Al-Bayati B M, Ahmad A K, Al-Naimee K A M 2018 J. Opt. Soc. Am. B 35 918Google Scholar

    [16]

    Huang H M, Lin L C, Chen C Y, Arsenijevic D, Bimberg D, Lin F Y, Grillot F 2018 Opt. Express 26 1743Google Scholar

    [17]

    Wang A B, Yang Y B, Wang B J, Zhang B B, Li L, Wang Y C 2013 Opt. Express 21 8701Google Scholar

    [18]

    Wang A B, Wang B J, Li L, Wang Y C, Shore K A 2015 IEEE J. Sel. Top. Quantum Electron. 21 531Google Scholar

    [19]

    Wang A B, Wang Y C, Yang Y B, Zhang M J, Xu H, Wang B J 2013 Appl. Phys. Lett. 102 031112Google Scholar

    [20]

    Buldu J M, Garcia-Ojalvo J, Torrent M C 2005 IEEE J. Quantum Electron. 41 164Google Scholar

    [21]

    Yang Q, Wu Z M, Wu G J, Xia G Q 2008 Opt. Commun. 281 5025Google Scholar

  • [1] 李雨晴, 王洪广, 翟永贵, 杨文晋, 王玥, 李韵, 李永东. 品质因数对TM02模相对论返波管工作模式影响. 物理学报, 2024, 73(3): 035202. doi: 10.7498/aps.73.20231577
    [2] 刘奇, 李璞, 开超, 胡春强, 蔡强, 张建国, 徐兵杰. 基于时延光子储备池计算的混沌激光短期预测. 物理学报, 2021, 70(15): 154209. doi: 10.7498/aps.70.20210355
    [3] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数. 物理学报, 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [4] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [5] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟. 物理学报, 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [6] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数. 物理学报, 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [7] 孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才. 基于混沌激光的无后处理多位物理随机数高速产生技术研究. 物理学报, 2017, 66(3): 030503. doi: 10.7498/aps.66.030503
    [8] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数. 物理学报, 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [9] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格. 物理学报, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [10] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究. 物理学报, 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [11] 黄丽萍, 洪斌斌, 刘畅, 唐昌建. 220GHz三次谐波光子带隙谐振腔回旋管振荡器的研究. 物理学报, 2014, 63(11): 118401. doi: 10.7498/aps.63.118401
    [12] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [13] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响. 物理学报, 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [14] 杜朝海, 李铮迪, 薛志浩, 刘濮鲲, 薛谦忠, 张世昌, 徐寿喜, 耿志辉, 顾伟, 粟亦农, 刘高峰. W波段损耗介质加载回旋返波振荡器中模式竞争的研究. 物理学报, 2012, 61(7): 070703. doi: 10.7498/aps.61.070703
    [15] 唐曦, 吴加贵, 夏光琼, 吴正茂. 基于互注入半导体激光器的混沌输出产生17.5 Gbit/s随机码. 物理学报, 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [16] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数. 物理学报, 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [17] 孟丽娜, 张明江, 郑建宇, 张朝霞, 王云才. 外部光注入混沌激光器产生超宽带微波信号的研究. 物理学报, 2011, 60(12): 124212. doi: 10.7498/aps.60.124212
    [18] 刘漾, 巩华荣, 魏彦玉, 宫玉彬, 王文祥, 廖复疆. 有效抑制光子晶体加载矩形谐振腔中模式竞争的方法. 物理学报, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [19] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [20] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
计量
  • 文章访问数:  9515
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 修回日期:  2019-03-25
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-05

/

返回文章
返回