-
6G无线网络预计在未来提供全球覆盖、高频谱效率、低成本、高安全性、更高智能水平的服务, 为人类社会打造一个无处不在的智能移动网络. 太赫兹无线通信具有高数据传输速率、低延时和抗干扰等特点, 有望在6G技术中得到广泛的应用. 本文主要介绍了6G技术的规划愿景、发展现状及其关键技术, 分析了太赫兹器件、信道、通信系统以及6G技术可能的发展趋势.
-
关键词:
- 6G技术 /
- 太赫兹量子级联激光器 /
- 单行载流子光电探测器 /
- 太赫兹通信
The future sixth-generation (6G) wireless network has advantages of global coverage, high spectrum efficiency, low cost, high safety, and higher intelligent level. The 6G technology can create ubiquitous intelligent mobile networks for human society. Terahertz wireless communication has the characteristics of high data transmission rate, low delay, and anti-interference, which may be widely used in 6G technology. This paper mainly introduces the planning vision, development status, and key 6G technology, and analyzes the terahertz devices, channels, communication systems, and the possible development trend of 6G technology.-
Keywords:
- 6G technology /
- terahertz quantum cascade laser /
- uni-traveling-carrier photodiode /
- terahertz communication
[1] 尤肖虎, 尹浩, 邬贺铨 2020 物联网学报 4 3
You X H, Yin H, Wu H Q 2020 Chin. J. Int. Things 4 3
[2] 尤肖虎 2020 视听界 6 9Google Scholar
You X H 2020 Broadcasting Realm 6 9Google Scholar
[3] Chen S Z, Liang Y C, Sun S H, Kang S L, Cheng W C, Peng M G 2020 IEEE Wirel. Commun. Lett. 27 218Google Scholar
[4] You X H, Wang C X, Huang J, et al. 2020 Sci. China Inform. Sci. 64 110301Google Scholar
[5] Zhang Z Q, Xiao Y, Ma Z, Xiao M, Ding Z G, Lei X F, Karagiannidis G K, Fan P Z 2019 IEEE Veh. Technol. Mag. 14 28Google Scholar
[6] Song H J, Ajito K, Shimizu N, Kukutsu N, Nagatsuma T 2011 XXXth URSI General Assembly and Scientific Symposium Istanbul, August 13−20, 2011 p1
[7] 刘帅军, 徐帆江, 刘立祥, 王大鹏 2020 卫星与网络 7 50Google Scholar
Liu S J, Xue F J, Liu L X, Wang D P 2020 Satellite Network 7 50Google Scholar
[8] Joo C, Choi J 2018 J. Commun. Netw-s kor 20 102Google Scholar
[9] Shakhatreh H, Sawalmeh A H, Al-Fuqaha A, Dou Z C, Almaita E, Khalil I, Othman N S, Khreishah A, Guizani M 2019 IEEE Access 7 48572Google Scholar
[10] Wang M M, Zhang J J, You X H 2020 IEEE Commun. Surv. Tut. 22 2550Google Scholar
[11] Xia T T, Wang M M, Zhang J J, Wang L 2020 IEEE Wirel. Commun. Lett. 27 188Google Scholar
[12] Ahmad I, Shahabuddin S, Kumar T, Okwuibe J, Gurtov A, Ylianttila M 2019 IEEE Commun. Surv. Tut. 21 3682Google Scholar
[13] Dorri A, Luo F J, Kanhere S S, Jurdak R, Dong Z Y 2019 IEEE Commun. Mag. 57 120Google Scholar
[14] Han S F, Chih-Lin I, Li G, Wang S, Sun Q 2017 IEEE Commun. Mag. 55 150Google Scholar
[15] Li R P, Zhao Z F, Zhou X, Ding G R, Chen Y, Wang Z Y, Zhang H G 2017 IEEE Wirel. Commun. Lett. 24 175Google Scholar
[16] Kibria M G, Nguyen K, Villardi G P, Zhao O, Ishizu K, Kojima F 2018 IEEE Access 6 32328Google Scholar
[17] Liu J, Liu W J, Hou X L, Kishiyama Y, Chen L, Asai T 2020 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications London, August 31− September 3, 2020 p1
[18] Hadani R, Rakib S, Tsatsanis M, Monk A, Goldsmith A J, Molisch A F, Calderbank R 2017 Wireless Communications and Networking Conference, SanFrancisco CA USA, March 19−22, 2017 p1
[19] Zhu L P, Xiao Z Y, Xia X G, Oliver Wu D 2019 IEEE Access 7 116123Google Scholar
[20] Shirvanimoghaddam M, Condoluci M, Dohler M, Johnson S J 2017 IEEE J. Select. Areas Commun. 35 2238Google Scholar
[21] 牛凯, 戴金晟, 朴瑨楠 2020 通信学报 41 9Google Scholar
Niu K, Dai J S, Piao J N 2020 J. Commun. 41 9Google Scholar
[22] [23] Zhu K, Wu Z J 2020 Wireless Communications and Networking Conference Workshops, Seoul, Korea, April 6−9, 2020 p1
[24] Bashir S, H. Alsharif M, Khan I, Albreem M A, Sali A, Mohd Ali B, Noh W 2020 Comput. Mater. Con. 66 263Google Scholar
[25] Akyildiz I F, Jornet J M 2016 Nano Commun. Netw. 8 46Google Scholar
[26] Ngo H Q, Ashikhmin A, Yang H, Larsson E G, Marzetta T L 2015 16th International Workshop on Signal Processing Advances in Wireless Communications Stockholm, Sweden, June 28−July 1, 2015 p201
[27] Feng Y, Wang M H, Wang D M, You X H 2019 International Conference on Communications Shanghai, China, May 20−24, 2019, p1
[28] 许颖, 任红, 王坦 2021 电信科学 37 102Google Scholar
Xu Y, Ren H, Wang T 2021 Telecom. Sci. 37 102Google Scholar
[29] Li L M, Wang D M, Niu X K, Chai Y, Chen L H, He L, Wu X, Zheng F C, Cui T J, You X H 2018 Sci. China Inform. Sci. 61 021301Google Scholar
[30] 施剑阳, 牛文清, 徐增熠, 迟楠 2021 无线电通信技术 47 692Google Scholar
Shi J Y, Niu W Q, Xu Z Y, Chi N 2021 Radio Commun. Technol. 47 692Google Scholar
[31] Bian R, Tavakkolnia I, Haas H 2019 J. Lightwave Technol. 37 2418Google Scholar
[32] Matinmikko-Blue M, Yrjola S, Ahokangas P 2020 2nd 6G Wireless Summit, Levi, Finland, March 17−20, 2020 p1
[33] 曹倩, 王健 2020 中国无线电 9 13Google Scholar
Cao Q, Wang J 2020 China Radio 9 13Google Scholar
[34] Huang K, Wang Z 2011 IEEE Microw. Mag. 12 108Google Scholar
[35] Abbasi N A, Hariharan A, Nair A M, Molisch A F 2020 14th European Conference on Antennas and Propagation (EuCAP) Copenhagen, Denmark, March 15−20, 2020 p1
[36] Kokkoniemi J, Lehtomaki J, Juntti M 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, August 27−30, 2019 p441
[37] 王敏, 王俊峰, 吴秋宇, 黄一辛 2014 物理学报 63 154101
Wang M, Wang J F, Wu Q Y, Huang Y X 2014 Acta. Phys. Sin. 63 154101
[38] Ma X Y, Chen Z, Chen W J, Li Z X, Chi Y J, Han C, Li S Q 2020 IEEE Access 8 99565Google Scholar
[39] Ma J J, Shrestha R, Moeller L, Mittleman D M 2018 APL Photon. 3 051601Google Scholar
[40] Song H J, Kosugi T, Hamada H, Tajima T, El Moutaouakil A, Matsuzaki H, Kawano Y, Takahashi T, Nakasha Y, Hara N, Fujii K, Watanabe I, Kasamatsu A, Yaita M 2016 International Microwave Symposium (IMS), San Francisco, CA, May 22−27, 2016 p1
[41] Takano K, Amakawa S, Katayama K, Hara S, Dong R B, Kasamatsu A, Hosako I, Mizuno K, Takahashi K, Yoshida T, Fujishima M 2017 International Solid-State Circuits Conference (ISSCC) San Francisco, CA , February 5−9, 2017, p308
[42] Hara S, Katayama K, Takano K, Dong R B, Watanabe I, Sekine N, Kasamatsu A, Yoshida T, Amakawa S, Fujishima M 2017 International Microwave Symposium-(IMS) Honololu, HI, USA , June 4−9, 2017 p1703
[43] Tessmann A, Schlechtweg M, Bruch D, Lewark U J. ; Leuther A, Massler H, Wagner S, Seelmann-Eggebert M, Hurm V, Aidam R, Kallfass I, Ambacher O 2013 Asia Pacific Microwave Conference (APMC 2013) Seoul, Korea (South), November 5−8, 2013 p203
[44] Kallfass I, Dan I, Rey S, Harati P , Antes J, Tessmann A, Wagner S, Kuri M, Weber R, Massler H, Leuther A, Merkle T, Kurner T 2015 IEICE T. Electron. E98.C 1081Google Scholar
[45] Chen Z, Zhang B, Zhang Y, Yue G G, Fan Y, Yuan Y 2016 IEICE Electron. Expr. 13 20160282Google Scholar
[46] Niu Z Q, Zhang B, Wang J L, Liu K, Chen Z, Yang K, Zhou Z, Fan Y, Zhang Y H, Ji D F, Feng Y N, Liu Y 2020 China Commun. 17 131Google Scholar
[47] Wu Q Y, Lin C X, Lu B, Miao L, Hao X, Wang Z H, Jiang Y, Li W Q, Den X J, Chen H B, Yao J, Zhang J 2017 IEEE 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Cancun, Mexico, August 27−September 1, 2017 p1
[48] Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar
[49] Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H 2013 Opt. Express 21 23736Google Scholar
[50] Koenig S, Lopez-Diaz D, Ante J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I 2013 Nature Photon. 7 977Google Scholar
[51] Nagatsuma T, Kurokawa T, Sonoda M, Ishibashi T, Shimizu M, Kato K 2018 International Microwave Symposium-IMS Philadelphia PA, USA, June 10−25, 2018 p1180
[52] Yu X, Jia S, Hu H, Galili M, Morioka T, Jepsen P U, Oxenløwe L K 2016 APL Photon. 1 081301Google Scholar
[53] Jia S, Yu X B, Hu H, Yu J L, Morioka T, Jepsen P U, Oxenlowe L K 2017 IEEE Photon. Technol. Lett. 29 310Google Scholar
[54] Jia S, Pang X D, Ozolins O, Yu X B, Hu H, Yu J L, Guan P Y, Da Ros F, Popov S, Jacobsen G, Galili M, Morioka T, Zibar D, Oxenloewe L K 2018 J. Lightwave Technol. 36 610Google Scholar
[55] Jia S, Zhang L, Wang S W, Li W, Qiao M Y, Lu Z J, Idrees N, Pang X D, Hu H, Zhang X M, Oxenloewe L K, Yu X B 2020 J. Lightwave Technol. 38 4715Google Scholar
[56] Harter T, Fullner C, Kemal J N, Ummethala S, Brosi M, Brundermann E, Freude W, Randel S, Koos C 2018 European Conference on Optical Communication (ECOC) Rome, Italy September 23−27, 2018 p1
[57] Wang S W, Lu Z J, Li W, Jia S, Zhang L, Qiao M Y, Pang X D, Idrees N, Saqlain M, Gao X, Cao X X, Lin C X, Wu Q Y, Zhang X M, Yu X B 2020 APL Photon. 5 056105Google Scholar
[58] Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nature Photon. 14 446Google Scholar
[59] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002Google Scholar
[60] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701
Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701
[61] Chen Z, Gu L, Tan Z Y, Wang C, Cao J C 2013 Chin. Opt. Lett. 11 112001Google Scholar
[62] Gu L, Tan Z Y, Wu Q Z, Wang C, Cao J C 2015 Chin. Opt. Lett. 13 081402Google Scholar
[63] Morohashi I, Irimajiri Y, Kannno A, Kawakami A, Yamamoto N, Sekine N, Kasamatsu A, Hosako I, 2018 International Topical Meeting on Microwave Photonics (MWP) Toulouse, October 22−25, 2018 p1
[64] Chen K, Xu D G, Li J N, Geng X N, Zhong K, Yao J Q 2020 Optik 208 164090Google Scholar
-
图 8 (a)草坪和(b)人行道上的链路距离与误码率性能的关系, 100 (黑色)、200 (蓝色)、300 (红色)和400 (绿色) GHz载波频率. 插图为路径损耗的平方根与距离和频率的乘积呈线性关系[39]
Fig. 8. The BER performance relevant to link distance on (a) lawn and (b) sidewalk, for 100 (black), 200 (blue), 300 (red), and 400 (green) GHz carrier frequencies. Inset: square root of path loss scales linearly with the product of the distance and the frequency[39].
图 9 (a)测量的BER性能与各种链路距离的关系及眼图, 由于信噪比的限制, 在60 cm处记录了最小误码率, 然后逐渐增加[40]; (b)广岛大学研发的最高单通道数据速率为105 Gbit/s的Tx的显微图像[41]
Fig. 9. (a) Measurements of bit error rate performance for various link distance and eye-diagrams, and the minimum BER was recorded at 60 cm then increased gradually, due to the SNR limitation[40]; (b) microimages of Tx with the highest single-channel 105 Gbit/s data rate developed by Hiroshima University[41].
图 11 (a)矩形波导输出的光电二极管的俯视图和侧视图, 对于600 GHz波段波导(WR-1.5), 内部波导尺寸为L = 0.381 mm, W = 0.191 mm; (b)直流偏置电压VB为–0.8 V, 光电流IPD为6 mA和9 mA时输出功率与频率关系[51]
Fig. 11. (a) Top view and side view of a photodiode with a rectangular waveguide output. In a 600-GHz-band waveguide (WR-1.5), interior waveguide sizes are L = 0.381 mm, and W = 0.191 mm; (b) output power and frequency relationship when VB is –0.8 V, IPD is 6 mA and 9 mA[51].
图 12 (a) 300−500 GHz频段上在50 cm的无线传输后对8个信道的误码率性能的测量[52]; (b)在2.8 m无线传输后, 对X和Y路径中的两路THz信号进行了评估, 图中为比特BER性能与UTC-PDS光功率的函数[55]; (c) “w/o KK”、“二次KK”、“指数KK”的BER与CSPR及UTC-PD输入的光功率的函数曲线[56]
Fig. 12. (a) Measurements of BER performance after 50 cm wireless transmission for 8 channels in the 300−500 GHz band[52]; (b) the evaluation of two-way THz signals in the X and Y paths after 2.8 m wireless transmission and a function of bit BER performance with UTC-PDS optical power in this figure[55]; (c) function curve of BER and the optical power input from CSPR and UTC-PD for “w/o” KK”, “quadratic KK” and “exponential KK” [56].
图 13 (a)扭曲畴壁的光学图像; (b)具有直畴壁、十个角的扭曲畴壁和无畴壁的VPC的传输曲线, 无畴壁的VPC, 在0.32−0.35 THz之间的传输明显降低, 而具有扭曲或直畴壁的VPC, 带隙内的传输接近统一[58]
Fig. 13. (a) An optical image of the fabricated twisted domain wall; (b) measured transmission curves for a VPC with a straight domain wall, a twisted domain wall with ten corners and no domain wall, transmission between 0.32−0.35 THz is significantly reduced, while transmission within the band gap in the VPC with twisted or straight domain walls is nearly uniform[58].
-
[1] 尤肖虎, 尹浩, 邬贺铨 2020 物联网学报 4 3
You X H, Yin H, Wu H Q 2020 Chin. J. Int. Things 4 3
[2] 尤肖虎 2020 视听界 6 9Google Scholar
You X H 2020 Broadcasting Realm 6 9Google Scholar
[3] Chen S Z, Liang Y C, Sun S H, Kang S L, Cheng W C, Peng M G 2020 IEEE Wirel. Commun. Lett. 27 218Google Scholar
[4] You X H, Wang C X, Huang J, et al. 2020 Sci. China Inform. Sci. 64 110301Google Scholar
[5] Zhang Z Q, Xiao Y, Ma Z, Xiao M, Ding Z G, Lei X F, Karagiannidis G K, Fan P Z 2019 IEEE Veh. Technol. Mag. 14 28Google Scholar
[6] Song H J, Ajito K, Shimizu N, Kukutsu N, Nagatsuma T 2011 XXXth URSI General Assembly and Scientific Symposium Istanbul, August 13−20, 2011 p1
[7] 刘帅军, 徐帆江, 刘立祥, 王大鹏 2020 卫星与网络 7 50Google Scholar
Liu S J, Xue F J, Liu L X, Wang D P 2020 Satellite Network 7 50Google Scholar
[8] Joo C, Choi J 2018 J. Commun. Netw-s kor 20 102Google Scholar
[9] Shakhatreh H, Sawalmeh A H, Al-Fuqaha A, Dou Z C, Almaita E, Khalil I, Othman N S, Khreishah A, Guizani M 2019 IEEE Access 7 48572Google Scholar
[10] Wang M M, Zhang J J, You X H 2020 IEEE Commun. Surv. Tut. 22 2550Google Scholar
[11] Xia T T, Wang M M, Zhang J J, Wang L 2020 IEEE Wirel. Commun. Lett. 27 188Google Scholar
[12] Ahmad I, Shahabuddin S, Kumar T, Okwuibe J, Gurtov A, Ylianttila M 2019 IEEE Commun. Surv. Tut. 21 3682Google Scholar
[13] Dorri A, Luo F J, Kanhere S S, Jurdak R, Dong Z Y 2019 IEEE Commun. Mag. 57 120Google Scholar
[14] Han S F, Chih-Lin I, Li G, Wang S, Sun Q 2017 IEEE Commun. Mag. 55 150Google Scholar
[15] Li R P, Zhao Z F, Zhou X, Ding G R, Chen Y, Wang Z Y, Zhang H G 2017 IEEE Wirel. Commun. Lett. 24 175Google Scholar
[16] Kibria M G, Nguyen K, Villardi G P, Zhao O, Ishizu K, Kojima F 2018 IEEE Access 6 32328Google Scholar
[17] Liu J, Liu W J, Hou X L, Kishiyama Y, Chen L, Asai T 2020 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications London, August 31− September 3, 2020 p1
[18] Hadani R, Rakib S, Tsatsanis M, Monk A, Goldsmith A J, Molisch A F, Calderbank R 2017 Wireless Communications and Networking Conference, SanFrancisco CA USA, March 19−22, 2017 p1
[19] Zhu L P, Xiao Z Y, Xia X G, Oliver Wu D 2019 IEEE Access 7 116123Google Scholar
[20] Shirvanimoghaddam M, Condoluci M, Dohler M, Johnson S J 2017 IEEE J. Select. Areas Commun. 35 2238Google Scholar
[21] 牛凯, 戴金晟, 朴瑨楠 2020 通信学报 41 9Google Scholar
Niu K, Dai J S, Piao J N 2020 J. Commun. 41 9Google Scholar
[22] [23] Zhu K, Wu Z J 2020 Wireless Communications and Networking Conference Workshops, Seoul, Korea, April 6−9, 2020 p1
[24] Bashir S, H. Alsharif M, Khan I, Albreem M A, Sali A, Mohd Ali B, Noh W 2020 Comput. Mater. Con. 66 263Google Scholar
[25] Akyildiz I F, Jornet J M 2016 Nano Commun. Netw. 8 46Google Scholar
[26] Ngo H Q, Ashikhmin A, Yang H, Larsson E G, Marzetta T L 2015 16th International Workshop on Signal Processing Advances in Wireless Communications Stockholm, Sweden, June 28−July 1, 2015 p201
[27] Feng Y, Wang M H, Wang D M, You X H 2019 International Conference on Communications Shanghai, China, May 20−24, 2019, p1
[28] 许颖, 任红, 王坦 2021 电信科学 37 102Google Scholar
Xu Y, Ren H, Wang T 2021 Telecom. Sci. 37 102Google Scholar
[29] Li L M, Wang D M, Niu X K, Chai Y, Chen L H, He L, Wu X, Zheng F C, Cui T J, You X H 2018 Sci. China Inform. Sci. 61 021301Google Scholar
[30] 施剑阳, 牛文清, 徐增熠, 迟楠 2021 无线电通信技术 47 692Google Scholar
Shi J Y, Niu W Q, Xu Z Y, Chi N 2021 Radio Commun. Technol. 47 692Google Scholar
[31] Bian R, Tavakkolnia I, Haas H 2019 J. Lightwave Technol. 37 2418Google Scholar
[32] Matinmikko-Blue M, Yrjola S, Ahokangas P 2020 2nd 6G Wireless Summit, Levi, Finland, March 17−20, 2020 p1
[33] 曹倩, 王健 2020 中国无线电 9 13Google Scholar
Cao Q, Wang J 2020 China Radio 9 13Google Scholar
[34] Huang K, Wang Z 2011 IEEE Microw. Mag. 12 108Google Scholar
[35] Abbasi N A, Hariharan A, Nair A M, Molisch A F 2020 14th European Conference on Antennas and Propagation (EuCAP) Copenhagen, Denmark, March 15−20, 2020 p1
[36] Kokkoniemi J, Lehtomaki J, Juntti M 2019 16th International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, August 27−30, 2019 p441
[37] 王敏, 王俊峰, 吴秋宇, 黄一辛 2014 物理学报 63 154101
Wang M, Wang J F, Wu Q Y, Huang Y X 2014 Acta. Phys. Sin. 63 154101
[38] Ma X Y, Chen Z, Chen W J, Li Z X, Chi Y J, Han C, Li S Q 2020 IEEE Access 8 99565Google Scholar
[39] Ma J J, Shrestha R, Moeller L, Mittleman D M 2018 APL Photon. 3 051601Google Scholar
[40] Song H J, Kosugi T, Hamada H, Tajima T, El Moutaouakil A, Matsuzaki H, Kawano Y, Takahashi T, Nakasha Y, Hara N, Fujii K, Watanabe I, Kasamatsu A, Yaita M 2016 International Microwave Symposium (IMS), San Francisco, CA, May 22−27, 2016 p1
[41] Takano K, Amakawa S, Katayama K, Hara S, Dong R B, Kasamatsu A, Hosako I, Mizuno K, Takahashi K, Yoshida T, Fujishima M 2017 International Solid-State Circuits Conference (ISSCC) San Francisco, CA , February 5−9, 2017, p308
[42] Hara S, Katayama K, Takano K, Dong R B, Watanabe I, Sekine N, Kasamatsu A, Yoshida T, Amakawa S, Fujishima M 2017 International Microwave Symposium-(IMS) Honololu, HI, USA , June 4−9, 2017 p1703
[43] Tessmann A, Schlechtweg M, Bruch D, Lewark U J. ; Leuther A, Massler H, Wagner S, Seelmann-Eggebert M, Hurm V, Aidam R, Kallfass I, Ambacher O 2013 Asia Pacific Microwave Conference (APMC 2013) Seoul, Korea (South), November 5−8, 2013 p203
[44] Kallfass I, Dan I, Rey S, Harati P , Antes J, Tessmann A, Wagner S, Kuri M, Weber R, Massler H, Leuther A, Merkle T, Kurner T 2015 IEICE T. Electron. E98.C 1081Google Scholar
[45] Chen Z, Zhang B, Zhang Y, Yue G G, Fan Y, Yuan Y 2016 IEICE Electron. Expr. 13 20160282Google Scholar
[46] Niu Z Q, Zhang B, Wang J L, Liu K, Chen Z, Yang K, Zhou Z, Fan Y, Zhang Y H, Ji D F, Feng Y N, Liu Y 2020 China Commun. 17 131Google Scholar
[47] Wu Q Y, Lin C X, Lu B, Miao L, Hao X, Wang Z H, Jiang Y, Li W Q, Den X J, Chen H B, Yao J, Zhang J 2017 IEEE 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Cancun, Mexico, August 27−September 1, 2017 p1
[48] Song H J, Ajito K, Muramoto Y, Wakatsuki A, Nagatsuma T, Kukutsu N 2012 Electron. Lett. 48 953Google Scholar
[49] Nagatsuma T, Horiguchi S, Minamikata Y, Yoshimizu Y, Hisatake S, Kuwano S, Yoshimoto N, Terada J, Takahashi H 2013 Opt. Express 21 23736Google Scholar
[50] Koenig S, Lopez-Diaz D, Ante J, Boes F, Henneberger R, Leuther A, Tessmann A, Schmogrow R, Hillerkuss D, Palmer R, Zwick T, Koos C, Freude W, Ambacher O, Leuthold J, Kallfass I 2013 Nature Photon. 7 977Google Scholar
[51] Nagatsuma T, Kurokawa T, Sonoda M, Ishibashi T, Shimizu M, Kato K 2018 International Microwave Symposium-IMS Philadelphia PA, USA, June 10−25, 2018 p1180
[52] Yu X, Jia S, Hu H, Galili M, Morioka T, Jepsen P U, Oxenløwe L K 2016 APL Photon. 1 081301Google Scholar
[53] Jia S, Yu X B, Hu H, Yu J L, Morioka T, Jepsen P U, Oxenlowe L K 2017 IEEE Photon. Technol. Lett. 29 310Google Scholar
[54] Jia S, Pang X D, Ozolins O, Yu X B, Hu H, Yu J L, Guan P Y, Da Ros F, Popov S, Jacobsen G, Galili M, Morioka T, Zibar D, Oxenloewe L K 2018 J. Lightwave Technol. 36 610Google Scholar
[55] Jia S, Zhang L, Wang S W, Li W, Qiao M Y, Lu Z J, Idrees N, Pang X D, Hu H, Zhang X M, Oxenloewe L K, Yu X B 2020 J. Lightwave Technol. 38 4715Google Scholar
[56] Harter T, Fullner C, Kemal J N, Ummethala S, Brosi M, Brundermann E, Freude W, Randel S, Koos C 2018 European Conference on Optical Communication (ECOC) Rome, Italy September 23−27, 2018 p1
[57] Wang S W, Lu Z J, Li W, Jia S, Zhang L, Qiao M Y, Pang X D, Idrees N, Saqlain M, Gao X, Cao X X, Lin C X, Wu Q Y, Zhang X M, Yu X B 2020 APL Photon. 5 056105Google Scholar
[58] Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B, Fujita M, Nagatsuma T, Singh R 2020 Nature Photon. 14 446Google Scholar
[59] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C, Liu H C 2011 Electron. Lett. 47 1002Google Scholar
[60] 谭智勇, 陈镇, 韩英军, 张戎, 黎华, 郭旭光, 曹俊诚 2012 物理学报 61 098701
Tan Z Y, Chen Z, Han Y J, Zhang R, Li H, Guo X G, Cao J C 2012 Acta Phys. Sin. 61 098701
[61] Chen Z, Gu L, Tan Z Y, Wang C, Cao J C 2013 Chin. Opt. Lett. 11 112001Google Scholar
[62] Gu L, Tan Z Y, Wu Q Z, Wang C, Cao J C 2015 Chin. Opt. Lett. 13 081402Google Scholar
[63] Morohashi I, Irimajiri Y, Kannno A, Kawakami A, Yamamoto N, Sekine N, Kasamatsu A, Hosako I, 2018 International Topical Meeting on Microwave Photonics (MWP) Toulouse, October 22−25, 2018 p1
[64] Chen K, Xu D G, Li J N, Geng X N, Zhong K, Yao J Q 2020 Optik 208 164090Google Scholar
计量
- 文章访问数: 14177
- PDF下载量: 605
- 被引次数: 0