搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

透射式GaAs光电阴极性能提高以及结构优化

吕行 富容国 常本康 郭欣 王芝

引用本文:
Citation:

透射式GaAs光电阴极性能提高以及结构优化

吕行, 富容国, 常本康, 郭欣, 王芝

Improvement and structure optimization of transmission-mode GaAs photocathode performance

Lü Xing, Fu Rong-Guo, Chang Ben-Kang, Guo Xin, Wang Zhi
PDF
HTML
导出引用
  • 为了提高透射式GaAs光电阴极性能, 将国内与美国ITT公司的透射式GaAs光电阴极量子效率曲线进行对比, 可知我国透射式光电阴极积分灵敏度已经达到2130 μA/lm, 美国ITT达到了2330 μA/lm. 利用修正后的量子效率、光学性能以及积分灵敏度的理论模型, 分别对两者进行光学结构拟合. 结果表明, 国内光电阴极在窗口层和发射层的厚度、电子扩散长度以及后界面复合速率等方面均与ITT有一定差距. 为了缩短两者的差距, 优化阴极结构参数, 具体研究了电子扩散长度和发射层厚度对量子效率的影响, 结果表明如果均匀掺杂透射式GaAs光电阴极发射层厚度为1.3 μm、电子扩散长度为7 μm, 则积分灵敏度可以达到2800 μA/lm以上.
    In order to improve the performance of transmitted GaAs photoelectric cathode, the quantum efficiency curve of Chinese transmitted GaAs photoelectric cathode is compared with that of the product of American ITT company, showing that the integration sensitivity of Chinese transmitted photoelectric cathode is 2130 μA/lm, and the American ITT company’s reaches 2330 μA/lm. Through the matrix method to solve the three membranes, the theoretical reflectivity is obtained. Based on the uniform doping transmission GaAs photocathode quantum efficiency formula, by replacing the fixed value R with variable value $ {R}_{{\mathrm{t}}{\mathrm{h}}{\mathrm{e}}} $, adding the short wave constraint factor, and modifying the quantum efficiency formula, a modified uniform doping transmission GaAs photocathode quantum efficiency formula is obtained. Using the revised quantum efficiency, optical performance and integral sensitivity theory model, through fitting the quantum efficiency curve of American ITT company product, introducing the ITT cathode component performance parameters, comparing the performance parameters of Chinese product, the results show that the Chinese photocathode in the window layer, the thickness of the emission layer, electron diffusion length and rear interface composite rate has a certain gap with ITT’s. In order to shorten the gap between the two and optimize the cathode structure parameters, the transmission GaAs photocathode optical structure software is designed to further analyze the influence of the electron diffusion length and the emission layer thickness on the quantum efficiency of the photocathode. The results show that with an electron diffusion length of 7 μm and emission layer thickness of 1.5 μm, the transmitted GaAs photocathode sensitivity can be more than 2800 μA/lm. However, the large electron diffusion length has high requirements for cathode materials and preparation level. The reasons responsible for the performance gap between Chinese product and other country’s are that in China the growth process of cathode materials is not jet matureand the cathode preparation equipment is out of date . In this paper, we study the relationship between GaAs photocathode optical performance and photoemission performance, and further optimize the structural design of cathode components, which has certain guiding significance for improving the cathode quantum efficiency and the level of image intensifier.
      通信作者: 富容国, frguo@njust.edu.cn
      Corresponding author: Fu Rong-Guo, frguo@njust.edu.cn
    [1]

    李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249

    Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249

    [2]

    张益军 2022 红外技术 44 778

    Zhang Y J 2022 Infrared Technol. 44 778

    [3]

    Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar

    [4]

    杜晓晴 2005 博士学位论文 (南京: 南京理工大学)

    Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [5]

    张益军 2012 博士学位论文 (南京: 南京理工大学)

    Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [6]

    邹继军 2007 博士学位论文 (南京: 南京理工大学)

    Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    赵静 2013 博士学位论文 (南京: 南京理工大学)

    Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [8]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [9]

    杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar

    Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar

    [10]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry

    [11]

    唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)

    Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press

    [12]

    张嘎 2021 硕士学位论文 (南京: 南京理工大学)

    Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [13]

    赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar

    [14]

    石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar

    Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar

    [15]

    赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar

    [16]

    郭向阳 2011 硕士学位论文 (南京: 南京理工大学)

    Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [17]

    Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar

    [18]

    Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888

    [19]

    冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar

    Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar

    [20]

    冯琤 2018 博士学位论文 (南京: 南京理工大学)

    Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

  • 图 1  求解三层膜的矩阵法

    Fig. 1.  Matrix method for solving three film.

    图 2  $ {{\mathrm{G}}{\mathrm{a}}}_{1-x}{{\mathrm{A}}{\mathrm{l}}}_{x}{\mathrm{A}}{\mathrm{s}} $光学常数随Al组分的变化[10]

    Fig. 2.  Variation of the ${{\mathrm{G}}{\mathrm{a}}}_{1-x}{{\mathrm{A}}{\mathrm{l}}}_{x}{\mathrm{A}}{\mathrm{s}} $ optical constant with the Al component[10].

    图 3  量子效率随Al组分的变化

    Fig. 3.  Variation of the quantum efficiency with the Al components.

    图 4  GaAs层掺杂浓度对材料吸收系数的影响

    Fig. 4.  Effect of GaAs-layer doping concentration on the absorption coefficient of materials.

    图 5  量子效率随掺杂浓度的变化

    Fig. 5.  Variation of quantum efficiency with the doping concentration.

    图 6  国产与ITT光电阴极量子效率对比[14,15]

    Fig. 6.  Comparison of domestic and ITT photoelectric cathode quantum efficiency [14,15].

    图 7  透射式阴极理论灵敏度随Te的变化

    Fig. 7.  Variation of the sensitivity of the transmission cathode theory with Te.

    图 8  透射式阴极理论灵敏度随Ld的变化

    Fig. 8.  Variation of the theoretical sensitivity of the transmission cathode with Ld.

    图 9  透射式阴极理论量子效率随Te的变化

    Fig. 9.  Variation of quantum efficiency of transmission cathode theory with Te.

    图 10  透射式阴极理论量子效率随Ld的变化

    Fig. 10.  Variation of quantum efficiency of transmission cathode theory with Ld.

    表 1  国内外透射式GaAs光电阴极光谱响应参数对比

    Table 1.  Comparison of response parameters of transmitted GaAs photocathode spectrum at home and abroad.

    曲线起始波长/nm截止波长/nm峰值波长/nm量子效率峰值/%积分灵敏度/(μA·lm–1)
    国内450930710452130
    ITT440920660432330
    下载: 导出CSV

    表 2  透射式光电阴极性能参数的对比

    Table 2.  Comparison of the performance parameters of the transmitted photocathode.

    类型表面逸出概率电子扩散
    长度/μm
    后界面复合
    速率/(cm·s–1)
    发射层
    厚度/μm
    窗口层
    厚度/μm
    窗口层Al组分阴极灵敏
    度/(μA·lm–1)
    国内0.522.51000001.50.40.72130
    ITT0.523.5100001.30.41.32330
    下载: 导出CSV
  • [1]

    李晓峰, 何雁彬, 徐传平, 李金沙, 张勤东 2022 红外技术 44 1249

    Li X F, He Y B, Xu C P, Li J S, Zhang Q D 2022 Infrared Technol. 44 1249

    [2]

    张益军 2022 红外技术 44 778

    Zhang Y J 2022 Infrared Technol. 44 778

    [3]

    Li X D, Jiang Z G, Gu Q, Zhao M H, Guo L 2020 Chin. Phys. Lett. 37 012901Google Scholar

    [4]

    杜晓晴 2005 博士学位论文 (南京: 南京理工大学)

    Du X Q 2005 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [5]

    张益军 2012 博士学位论文 (南京: 南京理工大学)

    Zhang Y J 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [6]

    邹继军 2007 博士学位论文 (南京: 南京理工大学)

    Zou J J 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [7]

    赵静 2013 博士学位论文 (南京: 南京理工大学)

    Zhao J 2013 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

    [8]

    邹继军, 常本康, 杨智 2007 物理学报 56 2992Google Scholar

    Zou J J, Chang B K, Yang Z 2007 Acta Phys. Sin. 56 2992Google Scholar

    [9]

    杨智, 邹继军, 常本康 2010 物理学报 59 4290Google Scholar

    Yang Z, Zou J J, Chang B K 2010 Acta Phys. Sin. 59 4290Google Scholar

    [10]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学 (北京: 电子工业出版社)

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (Beijing: Press of Electronic Industry

    [11]

    唐纳德·内曼著 (赵毅强, 姚素英, 解晓东 译) 2005 半导体物理与器件 (北京: 电子工业出版社)

    Neamen D A (translated by Zhao Y Q, Yao S Y, Xie X D) 2005 Semiconductor Physics and Devices (Beijing: Electronic Industry Press

    [12]

    张嘎 2021 硕士学位论文 (南京: 南京理工大学)

    Zhang G 2021 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [13]

    赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭 2011 物理学报 60 107802Google Scholar

    Zhao J, Zhang Y J, Chang B K, Xiong Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2011 Acta Phys. Sin. 60 107802Google Scholar

    [14]

    石峰, 赵静, 程宏昌, 张益军, 熊雅娟, 常本康 2012 光谱学与光谱分析 32 297Google Scholar

    Shi F, Zhao J, Cheng H C, Zhang Y J, Xiong Y J, Chang B K 2012 Spectrosc. Spectral Anal. 32 297Google Scholar

    [15]

    赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭 2012 物理学报 61 037803Google Scholar

    Zhao J, Chang B K, Zhang Y J, Zhang J J, Shi F, Cheng H C, Cui D X 2012 Acta Phys. Sin. 61 037803Google Scholar

    [16]

    郭向阳 2011 硕士学位论文 (南京: 南京理工大学)

    Guo X Y 2011 M. S. Thesis (Nanjing: Nanjing University of Science and Technology

    [17]

    Feng C, Zhang Y J, Qian Y S, et al. 2016 Opt. Commun. 369 50Google Scholar

    [18]

    Feng C, Zhang Y J, Qian Y S, Chang B K, Shi F, Jiao G C 2015 Opt. Express. 194 7888

    [19]

    冯琤, 张益军, 钱芸生 2015 中国科技论文 10 1916Google Scholar

    Feng C, Zhang Y J, Qian Y S 2015 Chin. Sciencepaper 10 1916Google Scholar

    [20]

    冯琤 2018 博士学位论文 (南京: 南京理工大学)

    Feng C 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology

  • [1] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [2] 龚凌云, 张萍, 陈倩, 楼志豪, 许杰, 高峰. Nb5+掺杂钛酸锶结构与性能的第一性原理研究. 物理学报, 2021, 70(22): 227101. doi: 10.7498/aps.70.20211241
    [3] 沈杰, 魏宾, 周静, Shen Shirley Zhiqi, 薛广杰, 刘韩星, 陈文. Ba(Mg1/3Nb2/3)O3电子结构第一性原理计算及光学性能研究. 物理学报, 2015, 64(21): 217801. doi: 10.7498/aps.64.217801
    [4] 姜艳, 刘贵立. 剪切形变对硼氮掺杂碳纳米管超晶格电子结构和光学性能的影响. 物理学报, 2015, 64(14): 147304. doi: 10.7498/aps.64.147304
    [5] 刘海永, 张敏, 林国强, 韩克昌, 张林. 脉冲偏压电弧离子镀Cr-O薄膜结构及光学性能研究. 物理学报, 2015, 64(13): 138104. doi: 10.7498/aps.64.138104
    [6] 黄小林, 侯丽珍, 喻博闻, 陈国良, 王世良, 马亮, 刘新利, 贺跃辉. Cu/C核/壳纳米结构的气相合成、形成机理及其光学性能研究. 物理学报, 2013, 62(10): 108102. doi: 10.7498/aps.62.108102
    [7] 贾晓琴, 何智兵, 牛忠彩, 何小珊, 韦建军, 李蕊, 杜凯. 热处理对制备辉光放电聚合物薄膜结构及光学性能的影响. 物理学报, 2013, 62(5): 056804. doi: 10.7498/aps.62.056804
    [8] 章瑞铄, 刘涌, 滕繁, 宋晨路, 韩高荣. 锐钛矿相和金红石相TiO2:Nb的光电性能研究. 物理学报, 2012, 61(1): 017101. doi: 10.7498/aps.61.017101
    [9] 管东波, 毛健. Magnli相亚氧化钛Ti8O15的电子结构和光学性能的第一性原理研究. 物理学报, 2012, 61(1): 017102. doi: 10.7498/aps.61.017102
    [10] 赵静, 常本康, 张益军, 张俊举, 石峰, 程宏昌, 崔东旭. 透射式蓝延伸GaAs光电阴极光学结构对比. 物理学报, 2012, 61(3): 037803. doi: 10.7498/aps.61.037803
    [11] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活时Cs的吸附效率研究. 物理学报, 2011, 60(4): 044209. doi: 10.7498/aps.60.044209
    [12] 王晓晖, 常本康, 钱芸生, 高频, 张益军, 乔建良, 杜晓晴. 透射式负电子亲和势GaN光电阴极的光谱响应研究. 物理学报, 2011, 60(5): 057902. doi: 10.7498/aps.60.057902
    [13] 赵静, 张益军, 常本康, 熊雅娟, 张俊举, 石峰, 程宏昌, 崔东旭. 高性能透射式GaAs光电阴极量子效率拟合与结构研究. 物理学报, 2011, 60(10): 107802. doi: 10.7498/aps.60.107802
    [14] 吴雪炜, 吴大建, 刘晓峻. 硼(氮、氟)掺杂对TiO2纳米颗粒光学性能的影响. 物理学报, 2010, 59(7): 4788-4793. doi: 10.7498/aps.59.4788
    [15] 张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤. 硼掺杂单壁碳纳米管吸附甲醛的电子结构和光学性能研究. 物理学报, 2010, 59(1): 527-531. doi: 10.7498/aps.59.527
    [16] 杨智, 邹继军, 常本康. 透射式指数掺杂GaAs光电阴极最佳厚度研究. 物理学报, 2010, 59(6): 4290-4295. doi: 10.7498/aps.59.4290
    [17] 彭丽萍, 徐 凌, 尹建武. N掺杂锐钛矿TiO2光学性能的第一性原理研究. 物理学报, 2007, 56(3): 1585-1589. doi: 10.7498/aps.56.1585
    [18] 谷建峰, 付伟佳, 刘 明, 刘志文, 马春雨, 张庆瑜. 电化学沉积高c轴取向ZnO薄膜及其光学性能分析. 物理学报, 2007, 56(10): 5979-5985. doi: 10.7498/aps.56.5979
    [19] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性. 物理学报, 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [20] 沈 健, 刘守华, 沈自才, 孔伟金, 黄建兵, 邵建达, 范正修. 基底微缺陷对介质薄膜光学性能影响的理论研究. 物理学报, 2005, 54(10): 4920-4925. doi: 10.7498/aps.54.4920
计量
  • 文章访问数:  867
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-21
  • 修回日期:  2023-10-12
  • 上网日期:  2023-10-24
  • 刊出日期:  2024-02-05

/

返回文章
返回