搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进遗传算法设计的超紧凑型片上硅光隔离器

冉冲冲 吴鸣杰 曾永灿 吴正茂 杨俊波 吴加贵

引用本文:
Citation:

基于改进遗传算法设计的超紧凑型片上硅光隔离器

冉冲冲, 吴鸣杰, 曾永灿, 吴正茂, 杨俊波, 吴加贵

Ultra-compact on-chip silicon photonics isolator using modified genetic algorithm

RAN Chongchong, WU Mingjie, ZENG Yongcan, WU Zhengmao, YANG Junbo, WU Jiagui
PDF
HTML
导出引用
  • 片上集成型光隔离器的定向光传输特性在光通信、光信号处理等领域有广泛的应用价值. 本文通过改进遗传算法, 引入分段的适应度函数(阶段1设定隔离度; 阶段2设定插入损耗), 并建立基因库; 在仅为$4.2\text{ μm}\times 3\text{ μm}$的区域内获得了一种超紧凑的光隔离器方案. 在标准的绝缘体上硅(Silicon On Insulator, SOI)基片上, 通过设置五种直径(60 nm, 120 nm, 180 nm, 240 nm, 300 nm)的刻蚀圆孔排布, 在1550 nmTE偏振模式下, 取得了隔离度约为31 dB、插入损耗约为2 dB的结果; 在1550 nmTM偏振模式下, 取得了隔离度约为38 dB、插入损耗2 dB的结果. 进一步的, 还分析了不同尺寸组对隔离器性能的影响.这些结果对于发展超小尺寸、高集成度的片上光信号定向传输方案有促进作用.
    The directional optical transmission characteristics of on-chip integrated optical isolators have wide application value in fields such as optical communication and optical signal processing. At early stage, various schemes of on-chip optical isolators have been developed, such as single-crystal magneto-optical pomegranate scheme, and silicon nitride ($\mathrm{Si_3N_4}$) micro-ring resonators. However, there is still lack of compact on-chip optical isolator solutions. Here, we proposed a compact and integrated silicon optical isolator on a standard silicon on insulator (SOI) substrate, designed by intelligent algorithms and a variety of micro-nano circular vias. A modified genetic algorithm is developed and introduce a segmented design fitness function and establishesa gene library to obtain an ultra-compact optical isolator scheme with a size of only $4.2\text{ μm}\times 3\text{ μm}$. On a standard silicon on insulator substrate, a linear passive isolation scheme was achieved by etching circular holes with five different diameters such as 60 nm, 120 nm, 180 nm, 240 nm and 300 nm.In TE polarization mode, the design achieved an isolation degree of approximately 31 dB and an insertion loss of approximately 2 dB. Furthermore, in TM polarization mode, the design achieved an isolation degree of approximately 38 dB and an insertion loss of 2 dB; Finally,the impact of different size groups on the performance of isolators was analyzed. Results show that the smaller circular hole structure,the better isolation performance. However, at the same time, we also need to consider the real silicon etching process requirements. Too small holes are difficult to etch in practice. We also evaluated the effect of 10 nm, 20 nm and 30 nm etch penetration between circular vias on the isolator performance, and results tentatively show that the etch penetration caused by the current more mature 30 nm etching process is acceptable. Therefore,considering all factors, a 30 nm minimum circular hole size and 30 nm minimum distance adjacent circular hole spacing are recommended. These results have a promoting effect on the development of highly integrated and ultra-small on-chip optical signal directional transmission schemes.
  • 图 1  隔离器结构示意图 (a)正向导通示意图, 下方是优化过程中可供选择的五种不同的圆孔孔径参数; (b)反向通光示意图, 下方的结构是1550 nm的TM模式光源经过1500次迭代后最优价值函数对应的隔离器结构分布图

    Fig. 1.  Isolator structure diagram (a) Schematic diagram of the forward guide, below which are the five different round hole aperture parameters that can be selected during the optimization process; (b) Reverse light passing diagram. The structure below is the distribution diagram of the isolator structure corresponding to the optimal value function of the 1550 nm TM mode light source after 1500 iterations.

    图 2  遗传算法的流程图

    Fig. 2.  Flow chart of genetic algorithm

    图 3  遗传算法的最优结构在正向、反向传播时光场模场分布 和对应的结构分布图(a) (d) (g) 迭代1次; (b) (e) (h) 迭代11次; (c) (f) (i) 迭代201次

    Fig. 3.  The optimal structure of genetic algorithm in the forward and backward propagation of power distribution and the corresponding structure distribution diagram (a) (d) (g) Iteration 1 times; (b) (e) (h) 11 iterations; (c) (f) (i) 201 iterations.

    图 4  将光源设置为1550 nmTE偏振的优化结果 (a) 透射率随着迭代次数的变化曲线; (b) 价值函数和隔离度随着算法的迭代的变化曲线; (c) 不同波长通过结构的透射率分布曲线; (d) (g) 正向、反向通光时的电场模场分布图; (e) (h) 正向、反向通光时的磁场分布图; (f) (i) 正向、反向通光时的光场模场分布图

    Fig. 4.  Optimization results of setting the light source to 1550 nmTE polarization (a) Transmittance with the number of iterations; (b) the variation curve of the value function and isolation degree with the iteration of the algorithm; (c) Transmittance distribution curves of different wavelengths through the structure; (d) (g) Mode field distribution of the electric field when the light is transmitted in the forward and reverse directions; (e) (h) Magnetic field distribution in forward and reverse transmission; (f) (i) Power distribution diagram for forward and reverse transmission

    图 5  TM偏振的优化结果. (a) (d) 1535 nm处的光场模场分布图; (b) (e) 1555 nm; (c) (f) 1575 nm; (g)隔离度、插入损耗的变化曲线; (h)透射率的变化曲线; (i)不同波长的光源通过结构的透射率和隔离度分布曲线; (j) (k) 1550 nm

    Fig. 5.  Optimization results of TM polarization. (a) (d) Optical power distribution at 1535 nm; (b) (e) 1555 nm; (c) (f) 1575 nm; (g) variation curves of isolation and insertion loss; (h) variation curves of transmittance; (i) transmittance curves and isolation distribution curves of different wavelengths of the light source passing through the structure; (j) (k) 1550 nm.

    图 6  四种特征尺寸随迭代次数的变化曲线和刻蚀穿透间距离 (a) 正向透射率; (b) 反向透射率; (c) 隔离度; (d) 价值函数; (e)—(h) 刻蚀10 nm孔间距得到的透射率曲线、示意图和光场模场分布图; (i)—(l) 刻蚀20 nm得到的结果; (m)—(p) 刻蚀30 nm得到的结果

    Fig. 6.  Variation curves of the four feature sizes with the number of iterations and the distance between the etched penetrations (a) forward transmittance; (b) reverse transmittance; (c) isolation; (d) FOM function; (e)–(h) Transmittance curves, schematic and power distribution plots obtained by etching 10 nm pore spacing; (i)–(l) results obtained by etching 20 nm; (m)–(p) results obtained by etching 30 nm.

  • [1]

    Yu M, Cheng R, Reimer C, He L, Luke K, Puma E, Shao L, Shams-Ansari A, Ren X, Grant H R, Johansson L, Zhang M, Lončar M 2023 Nat. Photonics 17 666Google Scholar

    [2]

    Huang D, Pintus P, Shoji Y, Morton P, Mizumoto T, Bowers J 2017 Opt. Lett. 42 23

    [3]

    Pintus P, Huang D, Zhang C, Shoji Y, Mizumoto T, Bowers J E 2017 J. Lightwave Technol. 35 1429Google Scholar

    [4]

    Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C 2011 Nat. Photonics 5 758Google Scholar

    [5]

    Onbasli M C, Beran L, Zahradník M, Kučera M, Antoš R, Mistrík J, Dionne G F, Veis M, Ross C A 2016 Sci. Rep. 6 23640Google Scholar

    [6]

    White A D, Ahn G H, Gasse K V, Yang K Y, Chang L, Bowers J E, Vučković J 2023 Nat. Photonics 17 143Google Scholar

    [7]

    Abdelsalam K, Li T, Khurgin J B, Fathpour S 2020 Optica 7 209Google Scholar

    [8]

    Dostart N, Gevorgyan H, Onural D, Popović M A 2021 Opt. Lett. 46 460Google Scholar

    [9]

    Lira H, Yu Z, Fan S, Lipson M 2012 Phys. Rev. Lett. 109 033901Google Scholar

    [10]

    Herrmann J F, Ansari V, Wang J, Witmer J D, Fan S, Safavi-Naeini A H 2022 Nat. Photonics 16 603Google Scholar

    [11]

    Yu Z, Fan S 2009 Nat. Photonics 3 91Google Scholar

    [12]

    Kang M S, Butsch A, Russell P S J 2011 Nat. Photonics 5 549Google Scholar

    [13]

    Wang C, Zhou C Z, Li Z Y 2011 Opt. Express 19 26948Google Scholar

    [14]

    Wang C, Zhong X L, Li Z Y 2012 Sci. Rep. 2 674Google Scholar

    [15]

    Mizumoto T, Shoji Y 2020 In Optical Fiber Communication Conference (OFC) 2020 (San Diego, California, United States: Optica Publishing Group), p T3 B.1. 8–12 March 2020

    [16]

    Karki D, Stenger V, Pollick A, Levy M 2019 J. Lightwave Technol. 38 827

    [17]

    Tian H, Liu J, Siddharth A, Wang R N, Blésin T, He J, Kippenberg T J, Bhave S A 2021 Nat. Photonics 15 828Google Scholar

    [18]

    Seldowitz M A, Allebach J P, Sweeney D W 1987 Appl. Opt. 26 2788Google Scholar

    [19]

    Yuan H, Wu J, Zhang J, Pu X, Zhang Z, Yu Y, Yang J 2022 Nanomaterials 12 669Google Scholar

    [20]

    Peng Z, Feng J, Yuan H, Cheng W, Wang Y, Ren X, Cheng H, Zang S, Shuai Y, Liu H, Wu J, Yang J 2022 Nanomaterials 12 1121Google Scholar

    [21]

    Lalau-Keraly C M, Bhargava S, Miller O D, Yablonovitch E 2013 Opt. Express 21 21693Google Scholar

    [22]

    Keraly C L, Bhargava S, Ganapati V, Scranton G, Yablonovitch E 2014 In CLEO: 2014 (San Jose, California United States: Optica Publishing Group), p STu2 M.6. 8–13 June 2014

    [23]

    Liao J, Tian Y, Yang Z, Xu H, Tang C, Wang Y, Zhang X, Kang Z 2024 Chin. Opt. Lett. 22 011302Google Scholar

    [24]

    Wang Z, Feng J, Li H, Zhang Y, Wu Y, Hu Y, Wu J, Yang J 2023 Nanomaterials 13 2516Google Scholar

    [25]

    Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M, Vučković J 2015 Nat. Photonics 9 374Google Scholar

    [26]

    Nanda A, Kues M, Calà Lesina A 2024 Opt. Lett. 49 1125Google Scholar

    [27]

    Vercruysse D, Sapra N V, Su L, et al 2019 Sci. Rep. 9 8999Google Scholar

    [28]

    Cao J, Zhao Z, Sun H, Yang Y, Deng Y, Cao P 2023 J. Phys.: Conf. Ser. 2464 012019Google Scholar

    [29]

    Mak J C, Sideris C, Jeong J, Hajimiri A, Poon J K 2016 Opt. Lett. 41 3868Google Scholar

    [30]

    Yao R, Li H, Zhang B, Chen W, Wang P, Dai S, Liu Y, Li J, Li Y, Fu Q, Dai T, Yu H, Yang J, Pavesi L 2021 J. Lightwave Technol. 39 6253Google Scholar

    [31]

    Lee I, Kim C, Ju K, Jun G, Yoon G 2023 Appl. Opt. 62 8994Google Scholar

    [32]

    Jia W, Jiang L, Li X 2010 Opt. Commun. 283 1537Google Scholar

    [33]

    Yu Z, Cui H, Sun X 2017 Opt. Lett. 42 3093Google Scholar

    [34]

    Mirzaei A, Miroshnichenko A E, Shadrivov I V, Kivshar Y S 2014 Appl. Phys. Lett. 10 5

    [35]

    Wang Z, Peng Z, Zhang Y, Wu Y, Hu Y, Wu J, Yang J 2023 Opt. Express 31 15904Google Scholar

    [36]

    Peng Z, Feng J, Du T, Cheng W, Wang Y, Zang S, Cheng H, Ren X, Shuai Y, Liu H, Wu J, Yang J 2022 Opt. Express 30 27366Google Scholar

    [37]

    Cakirlar C, Galderisi G, Beyer C, Simon M, Mikolajick T, Trommer J 2022 In 2022 IEEE 22 nd International Conference on Nanotechnology (NANO) (Palma de Mallorca, Spain: IEEE), pp 207–210. 04-08 July 2022

    [38]

    Saifullah M, Subramanian K, Tapley E, Kang D J, Welland M, Butler M 2003 Nano Lett. 3 1587Google Scholar

    [39]

    Wang K, Ren X, Chang W, Lu L, Liu D, Zhang M 2020 Photonics Res. 8 528Google Scholar

  • [1] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面. 物理学报, doi: 10.7498/aps.73.20240225
    [2] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, doi: 10.7498/aps.73.20231781
    [3] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究. 物理学报, doi: 10.7498/aps.64.153601
    [4] 常红伟, 马华, 张介秋, 张志远, 徐卓, 王甲富, 屈绍波. 基于加权实数编码遗传算法的超材料优化设计. 物理学报, doi: 10.7498/aps.63.087804
    [5] 何然, 黄思训, 周晨腾, 姜祝辉. 遗传算法结合正则化方法反演海洋大气波导. 物理学报, doi: 10.7498/aps.61.049201
    [6] 胡晓琴, 谢国锋. 遗传算法优化BaTiO3壳模型势参数. 物理学报, doi: 10.7498/aps.60.013401
    [7] 俎云霄, 周杰. 基于组合混沌遗传算法的认知无线电资源分配. 物理学报, doi: 10.7498/aps.60.079501
    [8] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化. 物理学报, doi: 10.7498/aps.60.057304
    [9] 宋丹, 张晓林. 基于不动点理论的多系统兼容接收机频点选择问题的研究与遗传算法实现. 物理学报, doi: 10.7498/aps.59.6697
    [10] 徐志君, 聂青苗, 李鹏华. 用遗传算法研究一维光晶格中玻色凝聚气体基态波函数. 物理学报, doi: 10.7498/aps.58.2878
    [11] 程兴华, 唐龙谷, 陈志涛, 龚 敏, 于彤军, 张国义, 石瑞英. GaMnN材料红外光谱中洛伦兹振子模型的遗传算法研究. 物理学报, doi: 10.7498/aps.57.5875
    [12] 俞阿龙. 基于遗传小波神经网络的机器人腕力传感器动态建模研究. 物理学报, doi: 10.7498/aps.57.3385
    [13] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究. 物理学报, doi: 10.7498/aps.56.3759
    [14] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究. 物理学报, doi: 10.7498/aps.56.2493
    [15] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, doi: 10.7498/aps.56.4313
    [16] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体. 物理学报, doi: 10.7498/aps.56.927
    [17] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用. 物理学报, doi: 10.7498/aps.55.275
    [18] 保文星, 朱长纯, 崔万照. 基于克隆选择的混合遗传算法在碳纳米管结构优化中的研究. 物理学报, doi: 10.7498/aps.54.5281
    [19] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制. 物理学报, doi: 10.7498/aps.54.1495
    [20] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制. 物理学报, doi: 10.7498/aps.53.21
计量
  • 文章访问数:  192
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-27

/

返回文章
返回