搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡流场中气泡破碎对声空化效果的影响

邱春扬 沈壮志 姚博文

引用本文:
Citation:

涡流场中气泡破碎对声空化效果的影响

邱春扬, 沈壮志, 姚博文

The impact of bubble breakup on cavitation effects in a vortex flow field

Qiu Chun-yang, Shen Zhuang-Zhi, Yao Bo-Wen
PDF
导出引用
  • 液态涡流场不仅可以传质传热,影响声场分布,还可以影响流场中气泡的行为特性,进一步影响声空化效果。以三维漏斗形涡流场中气泡的动力学方程并结合气泡破碎理论为基础,研究了涡流场(搅拌产生的流场)对气泡破碎概率及其气泡空化效果的影响。结果表明,随着转速的增加,气泡的破碎概率显著提高,同时气泡破碎临界半径逐渐减小,从600 rpm时的200μm降至2000 rpm时的55.5μm,这意味着在高速旋转的涡流场中,气泡在尚未膨胀到应达到的最大空化半径时就提前发生破碎,导致其失去空化效应,从而降低超声降解效果。实验结果进一步验证了声空化效果在适中转速(600-1000 rpm)下最佳,而过高转速则会抑制降解效果。这些发现为声空化技术的优化提供了理论基础和实验支持。
    The liquid vortex flow field plays a crucial role not only in the transfer of matter and heat but also in significantly affecting the distribution of sound fields, which in turn influences the behavior of bubbles in the flow. This ultimately impacts the phenomenon of acoustic cavitation. Based on the combination of the theory of bubble fragmentation and the theory of funnel-shaped vortex, in a three-dimensional vortex field. the effect of the vortex flow field (flow field generated by stirring) on the bubble breakup probability, as well as its modulation of acoustic cavitation, is investigated in this paper. In addition, the paper provides explanations for the phenomena observed in experiments: when the stirring speed reaches 1000 rpm, the degradation effect no longer shows a monotonous increase, but instead begins to decline.
    The study demonstrates that with the increase in stirring speed, the probability of bubble breakup increases significantly. For instance, when the stirring speed is 1000 rpm, the probability of bubble breakup is approximately 0.17%. At a stirring speed of 1500 rpm, the breakup probability rises to 23%, and at 2000 rpm, it reaches 44%. Moreover, the critical radius for bubble breakup also decreases. The critical radius, as defined in this study, refers to the bubble radius at which the probability of breakup becomes nonzero. Experimental data show that at 600 rpm, the critical radius for bubble breakup is about 200 μm, while at 2000 rpm, it shrinks to 55.5 μm. This indicates that in the high-speed rotating vortex field, bubbles may rupture before reaching their maximum cavitation radius, thus losing their effective cavitation effect.
    Further analysis shows that in the vortex flow field, for bubbles with an initial radius smaller than 22.5 μm, the temperature inside the bubble upon collapse can reach as high as 2217.3 K (corresponding to an initial radius of 22.5 μm). For bubbles with an initial radius of 20 μm, the collapse temperature can even reach 2264.3 K. For bubbles with an initial radius of 40 μm, when the stirring speed does not exceed 1500 rpm, the bubbles can still collapse under the influence of the sound field, and the temperature inside the bubble upon collapse can reach 1659.6 K, which is sufficient to trigger the cavitation effect. However, when the stirring speed exceeds 1500 rpm, bubbles may break up too quickly and lose their cavitation capacity, thus failing to produce the expected cavitation effect.
    Experimental results further verify that at moderate stirring speeds (600-1000 rpm), the acoustic cavitation effect is most pronounced, while excessively high stirring speeds suppress the enhancement of the degradation effect. This phenomenon suggests that the introduction of the vortex flow field makes the factors affecting acoustic cavitation more complex. The optimization of the acoustic cavitation effect requires not only consideration of the sound field distribution and mass transfer but also the comprehensive factors such as gas entrainment, bubble aggregation, and breakup. Therefore, a thorough analysis and regulation of these factors is essential for the wide application of acoustic cavitation technology in engineering, providing important theoretical value and practical significance, and offering scientific basis and directions for further optimization of the acoustic cavitation process.
  • [1]

    Zong X X 2023Mod. Ind. Econ. Inf. 8 197(in Chinese)[宗星星2023现代工业经济和信息化8 197]

    [2]

    Xu A, Wu Y H, Chen Z, Wu G, Wu Q, Ling F, Huang W E, Hu H Y 2020Water Cycle 1 80

    [3]

    Khan N, Pu J Y, Pu C S, Xu H X, Gu X Y, Zhang L, Huang F F, Nasir M A, Ullah R. 2019Ultrason. Sonochem. 56 350

    [4]

    Dehghani M H, Karri R R, Koduru J R, Manickam S., Tyagi I, Mubarak N M, Suhasf 2023Ultrason. Sonochem.94 106302

    [5]

    Flores EMM, Cravotto G, Bizzi CA, Santos D, Iop GD 2021Ultrason. Sonochem. 72 105455

    [6]

    Nanzai B, Mochizuki A, Wakikawa Y, Masuda Y, Oshio T, Yagishita K 2023Ultrason. Sonochem. 95 106357

    [7]

    Pandit AV, Sarvothaman VP, Ranade VV 2021Ultrason. Sonochem. 77 105677

    [8]

    Ji HF, Xu YF, Shi HF, Yang XD 2024Appl. Surf. Sci. 652 0169

    [9]

    Pokhrel N, Vabbina PK, Pala N 2016Ultrason. Sonochem. 29 104

    [10]

    Tian S, Li B, Dai Y, Wang ZL 2023Mater. Today. 68 254

    [11]

    Suslick K S, Price G J 1999Annu. Rev. Mater. Sci 29 295

    [12]

    Wang S X, Feng R, Shi Q 1992Prog. Nat. sci. 3 267(in Chinese)[王双维,冯若,史群1992自然科学进展3 267]

    [13]

    Zhang Z B, Gao T, Liu X Y, Li D W, Zhao J, Lei Y, Wang Y K 2018 Ultrason. Sonochem. 42 787

    [14]

    Moholkar V S 2009Chem. Eng. Sci. 64 5255

    [15]

    Ferkous H, Hamdaoui O, Pétrier C 2023 Ultrason. Sonochem. 99 106556

    [16]

    Wong C Y, Raymond J L, Usadi L N, Zong Z, Walton S C, Sedgwick A C, Kwan J 2023 Ultrason. Sonochem.99 106559

    [17]

    Maghami S, Johansson Ö 2024 Ultrason. Sonochem. 103 106804

    [18]

    Zhang X, Hao C, Ma C, Shen Z, Guo J, Sun R 2019Ultrason. Sonochem. 58 104691

    [19]

    Madeleine J B, Zhang D K 2014Ultrason. Sonochem. 21 485

    [20]

    Kojima Y, Asakura Y, Sugiyama G, Koda S 2010Ultrason. Sonochem.17 978

    [21]

    Liu J H, Shen Z Z, Lin S Y 2021 Phys. Rev. E 30 344

    [22]

    Wei X X 2022 Study on the Acoustic Scattering Theory of Arbitrary Three-Dimensional Vortex Flow Fields M.S. Dissertation(Xi'an: Shaanxi Normal University) (in Chinese) [魏鑫鑫2022任意三维涡流场声散射理论的研究硕士学位论文(西安:陕西师范大学)]

    [23]

    Wang Y R 2018 Scattering Characteristics of Two-Dimensional Plane Sound Waves in Oseen Vortex Flow Field M.S. Dissertation(Xi'an: Shaanxi Normal University) (in Chinese) [王英瑞2022 Oseen涡流场中二维平面声波的散射特性硕士学位论文(西安:陕西师范大学)]

    [24]

    Choi J K, Chahine G 2003Comput. Mech.32 281

    [25]

    Chen Y L, Wu C, Ye M, Li J 2005J. Hydraul. Eng. 36 1269(in Chinese)[陈云良,伍超,叶茂,李静2005水利学报36 1269]

    [26]

    Mih W C 2010 J. Hydraul. Res. 27 417

    [27]

    Hasan B O 2017 Chin. J. Chem. Eng 25 698

    [28]

    Coolaloglou C, Tavlarides L 1977Chem. Eng. Sci 32 1289

    [29]

    Hasan B O, Hamad M F, Majdi H S, Hathal M M 2021Eur. J. Mech. B/Fluids 85 430

    [30]

    Chen Z X, Xie M H, Zhou G Z, Yu P Q, Wang F H 2010Chem. Eng. J. 38 38(in Chinese)[陈志希,谢明辉,周国忠,虞培清,王抚华2010化学工程38 38

    [31]

    B Joseph, Keller 1980 J. Acoust. Soc. Am. 68 628

    [32]

    Ida M, Naoe T, Futakawa M 2007Phys. Rev. E 76 046309.

    [33]

    Liu J H, Shen Z Z 2021Acta Phys. Sin. 70178(in Chinese)[刘金河,沈壮志,林书玉2021物理学报70178]

    [34]

    Yusof N S M, Babgi B, Alghamdi Y, Aksu M, Madhavan J, Ashokkumar M 2016Ultrason. Sonochem. 29 568

    [35]

    Song K, Liu Y J, Ahmad U, Ma H L, Wang H X 2024chemosphere 350 141024

    [36]

    Lee D Y, Kang J, Son Y G 2023Ultrason. Sonochem. 101 1350

  • [1] 刘睿, 黄晨阳, 武耀蓉, 胡静, 莫润阳, 王成会. 声空化场中球状泡团的结构稳定性分析. 物理学报, doi: 10.7498/aps.73.20232008
    [2] 荆晨轩, 时胜国, 杨德森, 张姜怡, 李松. 水下低频振荡涡流场声散射调制机理与特性研究. 物理学报, doi: 10.7498/aps.72.20221748
    [3] 黄晨阳, 李凡, 田华, 胡静, 陈时, 王成会, 郭建中, 莫润阳. 空化场中大气泡对空化泡振动的抑制效应分析. 物理学报, doi: 10.7498/aps.72.20221955
    [4] 张颖, 吴文华, 王建元, 翟薇. 超声场中气泡稳态空化对枝晶生长过程的作用机制. 物理学报, doi: 10.7498/aps.71.20221101
    [5] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, doi: 10.7498/aps.71.20211266
    [6] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, doi: 10.7498/aps.70.20211266
    [7] 清河美, 那仁满都拉. 不同类型气泡组成的混合泡群声空化特性. 物理学报, doi: 10.7498/aps.69.20200381
    [8] 清河美, 那仁满都拉. 空化多泡中大气泡对小气泡空化效应的影响. 物理学报, doi: 10.7498/aps.68.20191198
    [9] 陈时, 张迪, 王成会, 张引红. 含混合气泡液体中声波共振传播的抑制效应. 物理学报, doi: 10.7498/aps.68.20182299
    [10] 郭策, 祝锡晶, 王建青, 叶林征. 超声场下刚性界面附近溃灭空化气泡的速度分析. 物理学报, doi: 10.7498/aps.65.044304
    [11] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, doi: 10.7498/aps.65.144301
    [12] 沈壮志. 声驻波场中空化泡的动力学特性. 物理学报, doi: 10.7498/aps.64.124702
    [13] 苗博雅, 安宇. 两种气泡混合的声空化. 物理学报, doi: 10.7498/aps.64.204301
    [14] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, doi: 10.7498/aps.63.034301
    [15] 叶曦, 姚熊亮, 张阿漫, 庞福振. 可压缩涡流场中空泡运动规律及声辐射特性研究. 物理学报, doi: 10.7498/aps.62.114702
    [16] 卢义刚, 吴雄慧. 双泡超声空化计算分析. 物理学报, doi: 10.7498/aps.60.046202
    [17] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, doi: 10.7498/aps.60.104302
    [18] 范孟豹, 曹丙花, 杨雪锋. 脉冲涡流检测瞬态涡流场的时域解析模型. 物理学报, doi: 10.7498/aps.59.7570
    [19] 陈 谦, 邹欣晔, 程建春. 超声波声孔效应中气泡动力学的研究. 物理学报, doi: 10.7498/aps.55.6476
    [20] 刘海军, 安宇. 空化单气泡外围压强分布. 物理学报, doi: 10.7498/aps.53.1406
计量
  • 文章访问数:  162
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2024-12-26

/

返回文章
返回