搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

声驻波场中空化泡的动力学特性

沈壮志

引用本文:
Citation:

声驻波场中空化泡的动力学特性

沈壮志

Dynamical behaviors of cavitation bubble under acoustic standing wave field

Shen Zhuang-Zhi
PDF
导出引用
  • 以水为工作介质, 考虑了液体的可压缩性, 研究了驻波声场中空化泡的运动特性, 模拟了驻波场中各位置处空化泡的运动状态以及相关参数对各位置处空化泡在主Bjerknes力作用下运动方向的影响. 结果表明: 驻波声场中, 空化泡的运动状态分为三个区域, 即在声压波腹附近空化泡做稳态空化, 在偏离波腹处空化泡做瞬态空化, 在声压波节附近, 空化泡在主Bjerknes 力作用下, 一直向声压波节处移动, 显示不发生空化现象; 驻波场中声压幅值增加有利于空化的发生, 但声压幅值增加到一定上限时, 压力波腹区域将排斥空化泡, 并驱赶空化泡向压力波节移动, 不利于空化现象的发生; 当声频率小于初始空化泡的共振频率时, 声频率越高, 由于主Bjerknes 力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生, 尤其是驻波场液面的高度不应是声波波长的1/4; 当声频率一定时, 空化泡初始半径越大越有利于空化现象的发生, 但当空化泡的初始半径超过声频率的共振半径时, 由于主Bjerknes力的作用将有更多的空化泡向声压波节移动, 不利于空化的发生.
    Considering the compressibility of liquid, we investigate the dynamical behaviors of a cavitation bubble in an acoustic standing wave field by regarding water as a work medium. The motion state of the cavitation bubble at each position is simulated in the standing wave field, the influences of the primary Bjerknes force on the motion direction of the cavitation bubble at each position are also simulated with different relevant parameters. The results show that in the standing wave field, the motion state of the cavitation bubble is divided into three aspects: the cavitation bubble is of steady-state cavitation near the pressure antinode; the cavitation bubble is of transient cavitation at the position deviating from the pressure antinode; in the vicinity of the acoustic pressure node, the cavitation bubble has been moving to the acoustic pressure node due to the primary Bjerknes force, so the phenomenon of cavitation does not occur. In the standing wave field, when the acoustic pressure amplitude exceeds its upper limit, the primary Bjerknes force makes the cavitation bubble move to pressure node, it is not conducive to the occurrence of cavitation. When the acoustic frequency is smaller than the bubble resonant frequency, the primary Bjerknes force will make more cavitation bubbles move to acoustic pressure node with the increase of the acoustic pressure, so this is not conducive to the occurrence of cavitation. Especially, the height of the liquid level should not be a quarter of acoustic wavelength. For a given acoustic frequency, the larger the initial radius of cavitation bubble, the more favorable the occurrence of cavitation is. But when the initial radius of cavitation bubble exceeds the resonant radius of acoustic frequency, the bubble will be pushed to pressure node. That is to say, the acoustic pressure amplitude, the acoustic frequency, and the initial radius of cavitation bubble each have a corresponding limit. Moreover, the lower limit is conducive to the occurrence of the phenomenon of cavitation.
    • 基金项目: 国家自然科学基金(批准号:11174191)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11174191).
    [1]

    Kumar P S, Kumar M S, Pandit A B 2000 Chem. Eng. Sci. 55 1633

    [2]

    Wang S K, Wang J G, Guo P Q, Guo W L, Li G L 2008 Ultrason. Sonchem. 15 357

    [3]

    Zong S G, Wang J A, Ma Z G 2010 Chin. J. Laser 37 1000 (in Chinese) [宗思光, 王江安, 马治国 2010 中国激光 37 1000]

    [4]

    Brujan E A, Nahen K, Schmidt P 2001 J. Fluid Mech. 433 251

    [5]

    Lang P S, Ching W K, Willberg D M 1998 Environ. Sci. Technol. 32 3142

    [6]

    Ye Q Z, Qi J, Gu W G, Li J 2004 High Volt. Eng. 20 110 (in Chinese) [叶齐政, 齐军, 顾温国, 李劲 2004 高电压技术 20 110]

    [7]

    Sikney Clement J 1987 IEEE Trans Ind. Appl. 23 224

    [8]

    Ishimoto J, Okubo M, Kamiyama S 1995 JSME Int. J. Ser. B 38 382

    [9]

    Cunha F R, Sousa A J, Morais P C 2002 J. Magnet. Magnet. Mater. 252 271

    [10]

    Mason T J 1993 Chem. Ind. 18 50

    [11]

    Feng R, Li H M 1992 Sonchemistry and Its Application (Anhui: Anhui Science and Technology Press) (in Chinese) p174 [冯若, 李化茂 1992 声化学及其应用 (安徽: 安徽科学技术出版社) 第174页]

    [12]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302 (in Chinese) [沈壮志, 林书玉 2011 物理学报 60 084302]

    [13]

    Lin S Y, Zhang F C, Guo X W 1993 Appl. Acoust. 12 34 (in Chinese) [林书玉, 张福成, 郭孝武 1993 应用声学 12 34]

    [14]

    Zhang J C 1993 Techn. Acoust. 12 28 (in Chinese) [张镜澄 1993 声学技术 12 28]

    [15]

    Shen Z Z, Shang Z Y 1999 Appl. Acoust. 18 41 (in Chinese) [沈壮志, 尚志远 1999 应用声学 18 41]

    [16]

    Zhu C P, Feng R, Yang Y, Xu Y 2000 Techn. Acoust. 19 125 (in Chinese) [朱昌平, 冯若, 杨勇, 徐勇 2000 声学技术 19 125]

    [17]

    Prosperetti A 1984 Ultrasonics 22 69

    [18]

    Keller B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [19]

    Du G H, Zhu Z M, Gong X F 1981 Acoustics Foundation (Shanghai: Shanghai Science Technology Press) p180 (in Chinese) [杜功焕, 朱哲民, 龚秀芬 1981 声学基础 (上海: 上海科学技术出版社) 第180页]

    [20]

    Fu J X 1988 J. Qufu Nor. Univ. 14 88 (in Chinese) [付吉孝 1988 曲阜师范大学学报 14 88]

    [21]

    Lauterborn W, Parlitz U 1988 J. Acoust. Soc. Am. 84 1975

    [22]

    Blake F G 1949 J. Acoust. Soc. Am. 21 551

    [23]

    Eller A 1968 J. Acoust. Soc. Am. 43 170

    [24]

    Akhatov I, Mettin R, Ohi C D, Parlitz U, Lauterborn W 1997 Phys. Rev. E 55 3747

    [25]

    Robert M, Alexander A D 2009 Appl. Acoust. 70 1330

  • [1]

    Kumar P S, Kumar M S, Pandit A B 2000 Chem. Eng. Sci. 55 1633

    [2]

    Wang S K, Wang J G, Guo P Q, Guo W L, Li G L 2008 Ultrason. Sonchem. 15 357

    [3]

    Zong S G, Wang J A, Ma Z G 2010 Chin. J. Laser 37 1000 (in Chinese) [宗思光, 王江安, 马治国 2010 中国激光 37 1000]

    [4]

    Brujan E A, Nahen K, Schmidt P 2001 J. Fluid Mech. 433 251

    [5]

    Lang P S, Ching W K, Willberg D M 1998 Environ. Sci. Technol. 32 3142

    [6]

    Ye Q Z, Qi J, Gu W G, Li J 2004 High Volt. Eng. 20 110 (in Chinese) [叶齐政, 齐军, 顾温国, 李劲 2004 高电压技术 20 110]

    [7]

    Sikney Clement J 1987 IEEE Trans Ind. Appl. 23 224

    [8]

    Ishimoto J, Okubo M, Kamiyama S 1995 JSME Int. J. Ser. B 38 382

    [9]

    Cunha F R, Sousa A J, Morais P C 2002 J. Magnet. Magnet. Mater. 252 271

    [10]

    Mason T J 1993 Chem. Ind. 18 50

    [11]

    Feng R, Li H M 1992 Sonchemistry and Its Application (Anhui: Anhui Science and Technology Press) (in Chinese) p174 [冯若, 李化茂 1992 声化学及其应用 (安徽: 安徽科学技术出版社) 第174页]

    [12]

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 084302 (in Chinese) [沈壮志, 林书玉 2011 物理学报 60 084302]

    [13]

    Lin S Y, Zhang F C, Guo X W 1993 Appl. Acoust. 12 34 (in Chinese) [林书玉, 张福成, 郭孝武 1993 应用声学 12 34]

    [14]

    Zhang J C 1993 Techn. Acoust. 12 28 (in Chinese) [张镜澄 1993 声学技术 12 28]

    [15]

    Shen Z Z, Shang Z Y 1999 Appl. Acoust. 18 41 (in Chinese) [沈壮志, 尚志远 1999 应用声学 18 41]

    [16]

    Zhu C P, Feng R, Yang Y, Xu Y 2000 Techn. Acoust. 19 125 (in Chinese) [朱昌平, 冯若, 杨勇, 徐勇 2000 声学技术 19 125]

    [17]

    Prosperetti A 1984 Ultrasonics 22 69

    [18]

    Keller B, Miksis M 1980 J. Acoust. Soc. Am. 68 628

    [19]

    Du G H, Zhu Z M, Gong X F 1981 Acoustics Foundation (Shanghai: Shanghai Science Technology Press) p180 (in Chinese) [杜功焕, 朱哲民, 龚秀芬 1981 声学基础 (上海: 上海科学技术出版社) 第180页]

    [20]

    Fu J X 1988 J. Qufu Nor. Univ. 14 88 (in Chinese) [付吉孝 1988 曲阜师范大学学报 14 88]

    [21]

    Lauterborn W, Parlitz U 1988 J. Acoust. Soc. Am. 84 1975

    [22]

    Blake F G 1949 J. Acoust. Soc. Am. 21 551

    [23]

    Eller A 1968 J. Acoust. Soc. Am. 43 170

    [24]

    Akhatov I, Mettin R, Ohi C D, Parlitz U, Lauterborn W 1997 Phys. Rev. E 55 3747

    [25]

    Robert M, Alexander A D 2009 Appl. Acoust. 70 1330

  • [1] 李航, 申永军, 杨绍普, 彭孟菲, 韩彦军. Duffing系统的主-超谐联合共振. 物理学报, 2021, 70(4): 040502. doi: 10.7498/aps.70.20201059
    [2] 许子非, 缪维跑, 李春, 金江涛, 李蜀军. 流场非线性特征提取与混沌分析. 物理学报, 2020, 69(24): 249501. doi: 10.7498/aps.69.20200625
    [3] 陈时, 张迪, 王成会, 张引红. 含混合气泡液体中声波共振传播的抑制效应. 物理学报, 2019, 68(7): 074301. doi: 10.7498/aps.68.20182299
    [4] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [5] 杨显杰, 陈建军, 夏光琼, 吴加贵, 吴正茂. 主副垂直腔面发射激光器动力学系统混沌输出的时延特征及带宽分析. 物理学报, 2015, 64(22): 224213. doi: 10.7498/aps.64.224213
    [6] 苗博雅, 安宇. 两种气泡混合的声空化. 物理学报, 2015, 64(20): 204301. doi: 10.7498/aps.64.204301
    [7] 王勇, 林书玉, 张小丽. 含气泡液体中的非线性声传播. 物理学报, 2014, 63(3): 034301. doi: 10.7498/aps.63.034301
    [8] 陈云龙, 伍歆. 力梯度辛方法在圆型限制性三体问题中的应用. 物理学报, 2013, 62(14): 140501. doi: 10.7498/aps.62.140501
    [9] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化. 物理学报, 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [10] 沈壮志, 林书玉. 声场中气泡运动的混沌特性. 物理学报, 2011, 60(10): 104302. doi: 10.7498/aps.60.104302
    [11] 王国光, 王丹, 何丽桥. 混沌中信号的投影滤波. 物理学报, 2010, 59(5): 3049-3056. doi: 10.7498/aps.59.3049
    [12] 李荣, 伍歆. 两个三阶最优化力梯度辛积分器的对称组合. 物理学报, 2010, 59(10): 7135-7143. doi: 10.7498/aps.59.7135
    [13] 罗诗裕, 邵明珠, 罗晓华. 晶体摆动场辐射系统的全局分叉与混沌行为. 物理学报, 2010, 59(4): 2685-2690. doi: 10.7498/aps.59.2685
    [14] 秦卫阳, 王红瑾, 高行山. 非线性恢复力耦合的振动系统广义同步与参数识别. 物理学报, 2008, 57(1): 42-45. doi: 10.7498/aps.57.42
    [15] 陈文钦, 海文华, 李 辉, 马志英. 脉冲式棘齿势场作用下囚禁离子的规则与混沌运动. 物理学报, 2007, 56(3): 1305-1312. doi: 10.7498/aps.56.1305
    [16] 陶朝海, 陆君安. 混沌系统的速度反馈同步. 物理学报, 2005, 54(11): 5058-5061. doi: 10.7498/aps.54.5058
    [17] 柯大观, 张 宏, 童勤业. 格子复杂性和符号序列的细粒化. 物理学报, 2005, 54(2): 534-542. doi: 10.7498/aps.54.534
    [18] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [19] 郝建红, 丁 武. 行波管放大器中辐射场的极限环振荡和混沌. 物理学报, 2003, 52(4): 906-910. doi: 10.7498/aps.52.906
    [20] 李国辉, 周世平, 徐得名, 赖建文. 间隙线性反馈控制混沌. 物理学报, 2000, 49(11): 2123-2128. doi: 10.7498/aps.49.2123
计量
  • 文章访问数:  6340
  • PDF下载量:  283
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-13
  • 修回日期:  2014-12-15
  • 刊出日期:  2015-06-05

/

返回文章
返回