搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于电磁谐振的极化无关透射吸收超材料吸波体

鲁磊 屈绍波 马华 余斐 夏颂 徐卓 柏鹏

引用本文:
Citation:

基于电磁谐振的极化无关透射吸收超材料吸波体

鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏

A polarization-independent transmission absorption metamaterial absorber based on electromagnetic resonance

Lu Lei, Qu Shao-Bo, Ma Hua, Yu Fei, Xia Song, Xu Zhuo, Bai Peng
PDF
导出引用
  • 仿真并实验验证了基于电磁谐振的极化无关透射吸收超材料吸波体, 该吸波体可以实现低频透射和高频吸收.实验测试结果表明, 该吸波体在6.77 GHz 吸收率峰值为83.6%, 半功率带宽为4.3%, 实现窄带强吸收.为进一步拓展该谐振型超材料吸波体的吸收带宽, 利用其低频透射特性, 将两个工作于不同频段的吸波体叠加在一起, 测试结果表明, 复合后超材料吸波体的半功率带宽可以增大到10.9%, 吸收率也略有增强. 该超材料吸波体设计简单, 具有较强的实用性和应用前景.
    In this paper, we simulate and experimentally validate a polarization-independent transmission absorption metamaterial absorber based on electromagnetic resonance. The metamaterial absorber can absorb the high-frequency electromagnetic wave, and the low-frequency wave can transmit through the absorber. The tested results indicate that the metamaterial absorber can achieve a narrow bandwidth high absorption with a peak absorption of 83.6% at 6.77 GHz, and a full width at half maximum (FWHM) of 4.3%. To further broaden the absorption bandwidth of the resonant metamaterial absorber, we place two absorbers with different working frequencies together for its low-frequency transmitted characteristic. The measured data show that the composite metamaterial absorber can increase the FWHM to 10.9%, and can enhance the absorption slightly. The metamaterial absorber has some advantages, such as simple design, strong practicability, and important application foreground.
    • 基金项目: 国家自然科学基金(批准号: 11274389, 61071058, 11204378)和国家重点基础研究发展计划(批准号: 2009CB623306)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274389, 61071058, 11204378) and the National Basic Research Program of China (Grant No. 2009CB623306).
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [3]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [4]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2010 Acta Phys. Sin. 61 134101 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [5]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [6]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [7]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [8]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [9]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641

    [12]

    Feng Q, Pu M B, Hu C G, Luo X G 2012 Opt. Lett. 37 2133

    [13]

    Dayal G, Ramakrishna S A 2012 Opt. Express 20 17503

    [14]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517

    [15]

    Wang Y, Sun T Y, Paudel T, Zhang Y, Ren Z F, Kempa K 2012 Nano Lett. 12 440

    [16]

    Wang J Q, Fan C Z, Ding P, He J N, Cheng Y G, Hu W Q, Cai G W, Liang E J, Xue Q Z 2012 Opt. Express 20 14871

    [17]

    Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [18]

    Holloway C L, Dienstfrey A, Kuester E F, O'Hara J F, Azad A K, Taylor A J 2009 Metamaterials 3 100

    [19]

    Kuester E F, Mohamed M A, Piket-May M, Holloway C L 2003 IEEE Trans. Antennas Propag. 51 2641

    [20]

    Morits D, Simovski C 2010 Phys. Rev. B 82 165114

    [21]

    Morits D, Simovski C 2012 Phys. Rev. B 85 039901(E)

    [22]

    Holloway C L, Kuester E F, Dienstfrey A 2011 IEEE Antennas Wireless Propag. Lett. 10 1507

    [23]

    Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J, Smith D R 2012 IEEE Antennas Propag. Mag. 54 10

    [24]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Koschny T, Markos P, Smith D R, Soukoulis C M 2003 Phys. Rev. E 68 065602(R)

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Wang B, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108

    [3]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张燕萍, 赵晓鹏 2010 物理学报 59 3187]

    [4]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2010 Acta Phys. Sin. 61 134101 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [5]

    Shen X P, Cui T J, Ye J X 2012 Acta Phys. Sin. 61 058101 (in Chinese) [沈晓鹏, 崔铁军, 叶建祥 2012 物理学报 61 058101]

    [6]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [7]

    Grant J, Ma Y, Saha S, Lok L B, Khalid A, Cumming D R S 2011 Opt. Lett. 36 1524

    [8]

    Huang L, Chowdhury D R, Ramani S, Reiten M T, Luo S N, Taylor A J, Chen H T 2012 Opt. Lett. 37 154

    [9]

    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H 2010 Nano Lett. 10 2342

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641

    [12]

    Feng Q, Pu M B, Hu C G, Luo X G 2012 Opt. Lett. 37 2133

    [13]

    Dayal G, Ramakrishna S A 2012 Opt. Express 20 17503

    [14]

    Aydin K, Ferry V E, Briggs R M, Atwater H A 2011 Nat. Commun. 2 517

    [15]

    Wang Y, Sun T Y, Paudel T, Zhang Y, Ren Z F, Kempa K 2012 Nano Lett. 12 440

    [16]

    Wang J Q, Fan C Z, Ding P, He J N, Cheng Y G, Hu W Q, Cai G W, Liang E J, Xue Q Z 2012 Opt. Express 20 14871

    [17]

    Gu S, Barrett J P, Hand T H, Popa B I, Cummer S A 2010 J. Appl. Phys. 108 064913

    [18]

    Holloway C L, Dienstfrey A, Kuester E F, O'Hara J F, Azad A K, Taylor A J 2009 Metamaterials 3 100

    [19]

    Kuester E F, Mohamed M A, Piket-May M, Holloway C L 2003 IEEE Trans. Antennas Propag. 51 2641

    [20]

    Morits D, Simovski C 2010 Phys. Rev. B 82 165114

    [21]

    Morits D, Simovski C 2012 Phys. Rev. B 85 039901(E)

    [22]

    Holloway C L, Kuester E F, Dienstfrey A 2011 IEEE Antennas Wireless Propag. Lett. 10 1507

    [23]

    Holloway C L, Kuester E F, Gordon J A, O'Hara J, Booth J, Smith D R 2012 IEEE Antennas Propag. Mag. 54 10

    [24]

    Smith D R, Schultz S, Markos P, Soukoulis C M 2002 Phys. Rev. B 65 195104

    [25]

    Koschny T, Markos P, Smith D R, Soukoulis C M 2003 Phys. Rev. E 68 065602(R)

  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] 杨鹏, 秦晋, 徐进, 韩天成. 超薄柔性透射型超构材料吸收器. 物理学报, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [5] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [6] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [7] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [8] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [9] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [10] 刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌. 等效环路有限差分算法及其在人工复合材料设计中的应用. 物理学报, 2013, 62(13): 130203. doi: 10.7498/aps.62.130203
    [11] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [15] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [16] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
计量
  • 文章访问数:  6646
  • PDF下载量:  930
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-10
  • 修回日期:  2012-11-28
  • 刊出日期:  2013-05-05

/

返回文章
返回