搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极薄宽角度平面超材料吸波体仿真与实验验证

鲁磊 屈绍波 苏兮 尚耀波 张介秋 柏鹏

引用本文:
Citation:

极薄宽角度平面超材料吸波体仿真与实验验证

鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏

Simulation and experiment demonstration of an ultra-thin wide-angle planar metamaterial absorber

Lu Lei, Qu Shao-Bo, Su Xi, Shang Yao-Bo, Zhang Jie-Qiu, Bai Peng
PDF
导出引用
  • 仿真和实验验证了厚度极薄的平面结构超材料吸波体, 该吸波体采用加载交指电容的耶路撒冷十字结构, 通过增加单元间的耦合电容显著降低了其工作频率. 测试结果表明, 该超材料吸波体在1.58 GHz, 吸收率峰值为88.48%, 其厚度为2 mm, 约为1/95工作波长, 吸波体的单元尺寸为11 mm, 约为1/17工作波长. 此外, 通过金属通孔将耶路撒冷十字结构与金属底板相连接, 使其对斜入射横电和横磁极化电磁波具有宽角度吸收特性, 在60°时依然具有较高的吸收率, 且吸收峰频率几乎不发生偏移, 从而使其更具实用价值.
    In this paper, we present the simulation and experimental validation of an ultra-thin planar metamaterial absorber, which is composed of Jerusalem crosses loaded by interdigital capacitors. By increasing the coupling capacitance between adjacent unit cells, we are able to significantly lower the operating frequency of the absorber. The measured results indicate that the metamaterial absorber achieves a peak absorption of 88.48% at 1.58 GHz. The total thickness and the unit cell size of the absorber are 2 mm and 11 mm, which are approximately 1/95 and 1/17 of the working wavelength, respectively. Additionally, the Jerusalem crosses and the metallic ground plane are connected by vias, which makes the metamaterial absorber achieve wide-angle absorption for both transverse electric and transverse magnetic polarizations electromagnetic wave. The absorptivity is still large even at the incident angle of 60°, and the frequency of the absorption peak almost has no deviation, which makes the absorber more practical.
    • 基金项目: 国家自然科学基金(批准号: 11274389)和国家重点基础研究发展计划(批准号: 2009CB623306) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11274389) and the National Basic Research Program of China (Grant No. 2009CB623306).
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [3]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [4]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张艳萍, 赵晓鹏 2010 物理学报 59 3187]

    [5]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [6]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [7]

    Chen S, Cheng H, Yang H F, Li J J, Duan X Y 2011 Appl. Phys. Lett. 99 253104

    [8]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [9]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Gordon O 2012 Chin. Phys. B 21 038501

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Fante R L, Mccormack M T 1988 IEEE Trans. Antennas Propag. 36 1443

    [12]

    Simovski C R, Maagt P D, Member S, Melchakova I V 2005 IEEE Trans. Antennas Propag. 53 908

    [13]

    Costa F, Monorchio A 2012 IEEE Trans. Antenn. Propag. 60 4650

    [14]

    Raynolds J E, Munk B A, Pryor J B, Marhefka R J 2003 J. Appl. Phys. 93 5346

    [15]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [16]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Räisänen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624

    [17]

    Costa F, Monorchio A, Manara G 2009 International Conference on Electromagnetics in Advanced Applications Turin, Italy, September 14-18, 2009 p852

    [18]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas and Propagation Society International Symposium Charleston, USA, June 1-5, 2009 p1

    [19]

    Tretyakov S 2003 Analytical Modeling in Applied Electromagnetics (1st Ed.) (London: Artech House) p230

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078 (in Chinese) [张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [3]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [4]

    Bao S, Luo C R, Zhang Y P, Zhao X P 2010 Acta Phys. Sin. 59 3187 (in Chinese) [保石, 罗春荣, 张艳萍, 赵晓鹏 2010 物理学报 59 3187]

    [5]

    Xu Y Q, Zhou P H, Zhang H B, Chen L, Deng L J 2011 J. Appl. Phys. 110 044102

    [6]

    Ma Y, Chen Q, Grant J, Saha S C, Khalid A, Cumming D R S 2011 Opt. Lett. 36 945

    [7]

    Chen S, Cheng H, Yang H F, Li J J, Duan X Y 2011 Appl. Phys. Lett. 99 253104

    [8]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [9]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Gordon O 2012 Chin. Phys. B 21 038501

    [10]

    Shen X P, Yang Y, Zang Y Z, Gu J, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [11]

    Fante R L, Mccormack M T 1988 IEEE Trans. Antennas Propag. 36 1443

    [12]

    Simovski C R, Maagt P D, Member S, Melchakova I V 2005 IEEE Trans. Antennas Propag. 53 908

    [13]

    Costa F, Monorchio A 2012 IEEE Trans. Antenn. Propag. 60 4650

    [14]

    Raynolds J E, Munk B A, Pryor J B, Marhefka R J 2003 J. Appl. Phys. 93 5346

    [15]

    Costa F, Monorchio A, Manara G 2012 IEEE Antenn. Propag. Mag. 54 35

    [16]

    Luukkonen O, Simovski C, Granet G, Goussetis G, Lioubtchenko D, Räisänen A V, Tretyakov S A 2008 IEEE Trans. Antenn. Propag. 56 1624

    [17]

    Costa F, Monorchio A, Manara G 2009 International Conference on Electromagnetics in Advanced Applications Turin, Italy, September 14-18, 2009 p852

    [18]

    Costa F, Monorchio A, Manara G 2009 IEEE Antennas and Propagation Society International Symposium Charleston, USA, June 1-5, 2009 p1

    [19]

    Tretyakov S 2003 Analytical Modeling in Applied Electromagnetics (1st Ed.) (London: Artech House) p230

  • [1] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [2] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [5] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [6] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [7] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [8] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [9] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [10] 刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌. 等效环路有限差分算法及其在人工复合材料设计中的应用. 物理学报, 2013, 62(13): 130203. doi: 10.7498/aps.62.130203
    [11] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [13] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [14] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [15] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [16] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [17] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
计量
  • 文章访问数:  3307
  • PDF下载量:  1088
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-19
  • 修回日期:  2013-07-19
  • 刊出日期:  2013-10-05

极薄宽角度平面超材料吸波体仿真与实验验证

  • 1. 空军工程大学理学院, 西安 710051;
  • 2. 空军工程大学综合电子信息系统与电子对抗技术研究中心, 西安 710051;
  • 3. 空军工程大学信息与导航学院, 西安 710077
    基金项目: 国家自然科学基金(批准号: 11274389)和国家重点基础研究发展计划(批准号: 2009CB623306) 资助的课题.

摘要: 仿真和实验验证了厚度极薄的平面结构超材料吸波体, 该吸波体采用加载交指电容的耶路撒冷十字结构, 通过增加单元间的耦合电容显著降低了其工作频率. 测试结果表明, 该超材料吸波体在1.58 GHz, 吸收率峰值为88.48%, 其厚度为2 mm, 约为1/95工作波长, 吸波体的单元尺寸为11 mm, 约为1/17工作波长. 此外, 通过金属通孔将耶路撒冷十字结构与金属底板相连接, 使其对斜入射横电和横磁极化电磁波具有宽角度吸收特性, 在60°时依然具有较高的吸收率, 且吸收峰频率几乎不发生偏移, 从而使其更具实用价值.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回