搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等效环路有限差分算法及其在人工复合材料设计中的应用

刘立国 吴微微 吴礼林 莫锦军 付云起 袁乃昌

引用本文:
Citation:

等效环路有限差分算法及其在人工复合材料设计中的应用

刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌

An algorithm of equivalent curcuit of FDTD and its application to designing metamaterial structure

Liu Li-Guo, Wu Wei-Wei, Wu Li-Lin, Mo Jin-Jun, Fu Yun-Qi, Yuan Nai-Chang
PDF
导出引用
  • 本文实现了一种新颖的等效环路有限差分算法, 这种算法借鉴传输线算法的思想, 在Yee氏网格中引入等效集总元件, 包括常规介质中的等效串联电感、并联电容和左手材料中的等效并联电感、串联电容等. 良好的物理思想使其可以提供适用色散介质计算的收敛性条件, 更加适合仿真计算频率选择表面和超材料等色散介质. 为了提高其计算效率, 研究了核内加速技术, 这种技术理论上可达到最高4倍的加速, 实际应用中得到2倍左右的加速效果. 使用该算法进行了超材料吸波体结构的设计, 通过单双环电阻加载实现宽带电磁波吸收功能. 隐身天线罩对于实现天线的带外隐身有着重要作用, 利用该算法设计了工作频率为1 GHz, 隐身频带在3 GHz到9 GHz的天线罩. 并与两个加工样品的测量结果进行了比较, 对比的结果验证了算法的正确性. 同时核内加速技术的有效性也通过仿真时间比较得到了验证.
    A novel finite-difference time domain (FDTD) algorithm named equivalent circuit FDTD (EC-FDTD) is realized, which introduces lumped elements from transmission line theory into Yee cell. It includes lumped elements such as series inductance and shunt capacitance in the right-handed materials, as well as shunt inductance and series capacitance in the left-handed materials. Due to its promising physical thoughts, it can be easily generalized to arbitrary dispersive materials including frequency selective surfaces and metamaterials. The technology of streaming single-instruction multiple-data (SIMD) extensions (SSE) was proposed by Intel and is currently utilized in personal computers. SSE is a kind of parallel speedup technology in one core. The speedup can be achieved four times in principle without changing hardware. Combined with SSE, the EC-FDTD can be apparently accelerated. Twice speedup is achieved in the tests of this paper. The algorithm of EC-FDTD is utilized to design the wideband metamaterials absorbers by employing the single square and double square loops loaded with the lumped resistors. The invisible radome has a great impact on reducing the radar cross section of the antenna out of band. The radome is designed with operating frequency to be 1 GHz and the absent bandwidth from 3 GHz to 9 GHz by the algorithm. And then these prototypes are fabricated and measured. From the comparative results, the correctness of EC-FDTD and the speedup of the SSE are both verified.
    • 基金项目: 新世纪优秀人才支持计划(批准号: NCET-10-0894)和国家自然科学基金(批准号: 60871069)资助的课题.
    • Funds: Project supported by the New Century Excellent Talents in University of China (Grant No. NCET-10-0894), and the National Natural Science Foundation of China (Grant No. 60871069).
    [1]

    Yu W H, Yang X L, Liu Y J, Mittra R, Muto A 2011 Advance FDTD Methods: parallelization, acceleration and engineering applications (Artech House: Boston London) pp37-46

    [2]

    Yu W H, Mittra R 1999 IEEE Trans. on Microwave Theory and Techniques 47 353

    [3]

    Yu W H, Mittra R 2000 IEEE Antennas and Propagation Magazine 42 28

    [4]

    Waldschmidt G J, Taflove A 2004 IEEE Antennas and Propagation Magazine 52 1658

    [5]

    Göddeke D, Strzodka R, Jamaludin M Y, McCormick P, Wobker H, Becker C, Turek S 2008 International Journal of Computational Science and Engineering 4 36

    [6]

    Wang Y, Yuan N Ch 2006 Journal of Systems Engineering and Electronic 17 80

    [7]

    Yi Y, Chen B, Chen H L, Fang D G 2007 IEEE Microwave and Wireless Components Letters 17 91

    [8]

    Yee K S 1966 IEEE Trans. on Antennas and Propagation 14 302

    [9]

    Rennings A, Otto S, Caloz C, Lauer A, Bilgic W, Waldow P 2006 Int. J. Numer. Model 19 141

    [10]

    Rennings A, Otto S, Lauer A, Caloz C, Waldow P 2006 Proc. of the European Microwave Association 2 71

    [11]

    Streaming SIMD extensions (SSE) Kosa- da Incorporated, Athens, Ohio 45701

    [12]

    Yu W H 2011 IEEE International Conference on Microwave Technology & Computional Electromagnetics Beijing, May22-25, 2011 p441

    [13]

    Caloz C, Itoh T 2005 Electromagnetic metamaterials: transmission line theory and microwave applications (John Wiley & Sons: New Jersey) pp59-131

    [14]

    Rennings A, Lauer A, Caloz C, Wolff I 2008 Springer Proceedings in Physics 121

    [15]

    Wang X D, Ye Y H, Ma J, Jiang M P 2010 Chin. Phys. Lett. 27 94101

    [16]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501

    [17]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu, Gu W 2011 Chin. Phys. B 20 017801

    [18]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

    [19]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. on Antennas and Propagation 58 1551

    [21]

    Kozakoff D J 2010 Analysis of Radome-Enclosed Antennas (Artech House: MA) pp55-73

    [22]

    Costa F, Monorchio A 2012 IEEE Trans. on Antennas and Propagation 60 2740

  • [1]

    Yu W H, Yang X L, Liu Y J, Mittra R, Muto A 2011 Advance FDTD Methods: parallelization, acceleration and engineering applications (Artech House: Boston London) pp37-46

    [2]

    Yu W H, Mittra R 1999 IEEE Trans. on Microwave Theory and Techniques 47 353

    [3]

    Yu W H, Mittra R 2000 IEEE Antennas and Propagation Magazine 42 28

    [4]

    Waldschmidt G J, Taflove A 2004 IEEE Antennas and Propagation Magazine 52 1658

    [5]

    Göddeke D, Strzodka R, Jamaludin M Y, McCormick P, Wobker H, Becker C, Turek S 2008 International Journal of Computational Science and Engineering 4 36

    [6]

    Wang Y, Yuan N Ch 2006 Journal of Systems Engineering and Electronic 17 80

    [7]

    Yi Y, Chen B, Chen H L, Fang D G 2007 IEEE Microwave and Wireless Components Letters 17 91

    [8]

    Yee K S 1966 IEEE Trans. on Antennas and Propagation 14 302

    [9]

    Rennings A, Otto S, Caloz C, Lauer A, Bilgic W, Waldow P 2006 Int. J. Numer. Model 19 141

    [10]

    Rennings A, Otto S, Lauer A, Caloz C, Waldow P 2006 Proc. of the European Microwave Association 2 71

    [11]

    Streaming SIMD extensions (SSE) Kosa- da Incorporated, Athens, Ohio 45701

    [12]

    Yu W H 2011 IEEE International Conference on Microwave Technology & Computional Electromagnetics Beijing, May22-25, 2011 p441

    [13]

    Caloz C, Itoh T 2005 Electromagnetic metamaterials: transmission line theory and microwave applications (John Wiley & Sons: New Jersey) pp59-131

    [14]

    Rennings A, Lauer A, Caloz C, Wolff I 2008 Springer Proceedings in Physics 121

    [15]

    Wang X D, Ye Y H, Ma J, Jiang M P 2010 Chin. Phys. Lett. 27 94101

    [16]

    Yang Y J, Huang Y J, Wen G J, Zhong J P, Sun H B, Oghenemuero G 2012 Chin. Phys. B 21 038501

    [17]

    Gu C, Qu S B, Pei Z B, Xu Z, Liu, Gu W 2011 Chin. Phys. B 20 017801

    [18]

    Cheng Y Z, Wang Y, Nie Y, Zheng D H, Gong R Z, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134102 (in Chinese) [程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜 2012 物理学报 61 134102]

    [19]

    Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X, Li H 2011 Opt. Express 19 9401

    [20]

    Costa F, Monorchio A, Manara G 2010 IEEE Trans. on Antennas and Propagation 58 1551

    [21]

    Kozakoff D J 2010 Analysis of Radome-Enclosed Antennas (Artech House: MA) pp55-73

    [22]

    Costa F, Monorchio A 2012 IEEE Trans. on Antennas and Propagation 60 2740

  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [4] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [5] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [6] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [7] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [8] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [9] 程用志, 聂彦, 龚荣洲, 王鲜. 基于电阻膜与分形频率选择表面的超薄宽频带超材料吸波体的设计. 物理学报, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [10] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [11] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [12] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [16] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [17] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
计量
  • 文章访问数:  4728
  • PDF下载量:  749
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-24
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-07-05

/

返回文章
返回