搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集总元件和负微分元件的有源可调谐超材料传输线

司黎明 侯吉旋 刘埇 吕昕

引用本文:
Citation:

基于集总元件和负微分元件的有源可调谐超材料传输线

司黎明, 侯吉旋, 刘埇, 吕昕

Active tunable metamaterial transmission line based on lumped elements and negative differencial devices

Si Li-Ming, Hou Ji-Xuan, Liu Yong, Lü Xin
PDF
导出引用
  • 针对无源超材料高色散、高损耗和均匀性差的缺点,利用集总元件和负微分元件设计、加工了一种微波频段的有源可调谐超材料传输线,并对其进行了测试. 实验获得了具有散射参数随外加偏置电压改变而变化的电控可调谐特性以及衰减常数为负值的有源超材料传输线.
    To overcome the defects of metamaterials, such as high dispersion, the high loss, and the problem of homogenization, we design and implement an active tunable metamaterial transmission line, and measure the characteristics of active tunable metamaterial transmission line that is based on lumped elements and negative differential devices. From the measured results, it exhibits not only electronically tunable scattering parameters (electro-control tunable characteristic) but also the negative attenuation constant (the propagation amplification) in the left-handed frequency band (active characteristic).
    • 基金项目: 国家高技术研究发展计划(批准号:2012AA8123012)、国家自然科学基金(批准号:61307128,61275107)、高等学校博士学科点专项科研基金(批准号:20131101120027)和北京理工大学基础研究基金(批准号:20120542015)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2012AA8123012), the National Natural Science Foundation of China (Grant Nos. 61307128, 61275107), the Specialized Research Fundation for the Doctoral Program of Higher Education of China (Grant No. 20131101120027), and the Basic Research Foundation of Beijing Institute of Technology, China (Grant No. 20120542015).
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 48

    [2]

    Cui T J, Smith D R, Liu R P 2010 Metamaterials: Theory, Design and Applications (New York: Springer)

    [3]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory an Microwave Applications (New York: John Wiley & Sons)

    [4]

    Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387

    [5]

    Hao J M, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104

    [6]

    Tang M C, Xiao S Q, Wang D, Ge G D, Bai Y Y, Zhang J R, Wang B Z 2011 Chin. Phys. B 20 067805

    [7]

    Chen W Y T, Han P Y, Kuo M L, Lin S Y, Zhang X C 2012 Acta Phys. Sin. 61 088401 (in Chinese) [陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成 2012 物理学报 61 088401]

    [8]

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 物理学报 61 084102]

    [9]

    Si L M, Zhu W, Sun H J 2013 IEEE Antenn. Wirel. Propag. Lett. 12 305

    [10]

    Si L M, Liu Y, Lu H, Sun H J, L X, Zhu W 2013 IEEE Photon. Technol. Lett. 25 519

    [11]

    Liu Y, Si L M, Zhu S H, Xin H 2011 Electron. Lett. 47 80

    [12]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [13]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [14]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Caloz C, Itoh T 2002 IEEE International Symposium on Antennas and Propagation Digest San Antonio, USA, 2002 p412

    [17]

    Iyer A K, Eleftheriades G V 2002 IEEE International Symposium on Microwave Theory and Techniques Digest Seattle, USA, p1067

    [18]

    Grbic A, Eleftheriades G V 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p340

    [19]

    Oliner A A 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p41

    [20]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [21]

    Casares-Miranda F P, Camacho-Penalosa C, Caloz C 2006 IEEE Trans. Antenn. Propag. 54 2292

    [22]

    Powell D A, Shadrivov I V, Kivshar Y S 2009 Appl. Phys. Lett. 94 084105

    [23]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [24]

    Si L M, Jiang T, Chang K, Chen T C, L X, Ran L X, Xin H 2011 Materials 4 73

    [25]

    Jiang T, Chang K, Si L M, Ran L X, Xin H 2011 Phys. Rev. Lett. 107 205503

    [26]

    Si L M, Sun H, L X 2011 Microw. Opt. Techn. Lett. 53 515

    [27]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930

    [28]

    Eleftheriades G V, Lyer A K, Kremer P C 2002 IEEE Trans. Microw. Theory. Tech. 50 2702

    [29]

    He L, Zhang Y W, Li H Q, Chen H, Zhang D K 2005 Acta Phys. Sin. 54 768 (in Chinese) [赫丽, 张冶文, 李宏强, 陈鸿, 张东科 2005 物理学报 54 768]

    [30]

    Zhu W R, Rukhlenko I D, Si L M, Premaratne M 2013 Appl. Phys. Lett. 102 121911

    [31]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049

    [32]

    Si L M, Hou J X, Liu Y, L X 2013 Acta Phys. Sin. 62 037806 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2013 物理学报 62 037806]

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 48

    [2]

    Cui T J, Smith D R, Liu R P 2010 Metamaterials: Theory, Design and Applications (New York: Springer)

    [3]

    Caloz C, Itoh T 2005 Electromagnetic Metamaterials: Transmission Line Theory an Microwave Applications (New York: John Wiley & Sons)

    [4]

    Chen H Y, Chan C T, Sheng P 2010 Nat. Mater. 9 387

    [5]

    Hao J M, Wang J, Liu X L, Padilla W J, Zhou L, Qiu M 2010 Appl. Phys. Lett. 96 251104

    [6]

    Tang M C, Xiao S Q, Wang D, Ge G D, Bai Y Y, Zhang J R, Wang B Z 2011 Chin. Phys. B 20 067805

    [7]

    Chen W Y T, Han P Y, Kuo M L, Lin S Y, Zhang X C 2012 Acta Phys. Sin. 61 088401 (in Chinese) [陈吴玉婷, 韩鹏昱, Kuo Mei-Ling, Lin Shawn-Yu, 张希成 2012 物理学报 61 088401]

    [8]

    Su Y Y, Gong B Y, Zhao X P 2012 Acta Phys. Sin. 61 084102 (in Chinese) [苏妍妍, 龚伯仪, 赵晓鹏 2012 物理学报 61 084102]

    [9]

    Si L M, Zhu W, Sun H J 2013 IEEE Antenn. Wirel. Propag. Lett. 12 305

    [10]

    Si L M, Liu Y, Lu H, Sun H J, L X, Zhu W 2013 IEEE Photon. Technol. Lett. 25 519

    [11]

    Liu Y, Si L M, Zhu S H, Xin H 2011 Electron. Lett. 47 80

    [12]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [13]

    Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE Trans. Microw. Theory Tech. 47 2075

    [14]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Caloz C, Itoh T 2002 IEEE International Symposium on Antennas and Propagation Digest San Antonio, USA, 2002 p412

    [17]

    Iyer A K, Eleftheriades G V 2002 IEEE International Symposium on Microwave Theory and Techniques Digest Seattle, USA, p1067

    [18]

    Grbic A, Eleftheriades G V 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p340

    [19]

    Oliner A A 2002 USNC/URSI National Radio Science Meeting San Antonio, USA, p41

    [20]

    Sanada A, Caloz C, Itoh T 2004 IEEE Microw. Wirel. Compon. Lett. 14 68

    [21]

    Casares-Miranda F P, Camacho-Penalosa C, Caloz C 2006 IEEE Trans. Antenn. Propag. 54 2292

    [22]

    Powell D A, Shadrivov I V, Kivshar Y S 2009 Appl. Phys. Lett. 94 084105

    [23]

    Xiao S, Drachev V P, Kildishev A V, Ni X, Chettiar U K, Yuan H K, Shalaev V M 2010 Nature 466 735

    [24]

    Si L M, Jiang T, Chang K, Chen T C, L X, Ran L X, Xin H 2011 Materials 4 73

    [25]

    Jiang T, Chang K, Si L M, Ran L X, Xin H 2011 Phys. Rev. Lett. 107 205503

    [26]

    Si L M, Sun H, L X 2011 Microw. Opt. Techn. Lett. 53 515

    [27]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930

    [28]

    Eleftheriades G V, Lyer A K, Kremer P C 2002 IEEE Trans. Microw. Theory. Tech. 50 2702

    [29]

    He L, Zhang Y W, Li H Q, Chen H, Zhang D K 2005 Acta Phys. Sin. 54 768 (in Chinese) [赫丽, 张冶文, 李宏强, 陈鸿, 张东科 2005 物理学报 54 768]

    [30]

    Zhu W R, Rukhlenko I D, Si L M, Premaratne M 2013 Appl. Phys. Lett. 102 121911

    [31]

    Zhao J, Cheng Q, Chen J, Qi M Q, Jiang W X, Cui T J 2013 New J. Phys. 15 043049

    [32]

    Si L M, Hou J X, Liu Y, L X 2013 Acta Phys. Sin. 62 037806 (in Chinese) [司黎明, 侯吉旋, 刘埇, 吕昕 2013 物理学报 62 037806]

  • [1] 杜安天, 刘若涛, 曹春芳, 韩实现, 王海龙, 龚谦. 利用InAs/GaAs数字合金超晶格改进InAs量子点有源区的结构设计. 物理学报, 2023, 72(12): 128101. doi: 10.7498/aps.72.20230270
    [2] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [3] 胥强荣, 朱洋, 林康, 沈承, 卢天健. 一种具有动态磁负刚度薄膜声学超材料的低频隔声特性. 物理学报, 2022, 71(21): 214301. doi: 10.7498/aps.71.20221058
    [4] 陶蒙蒙, 陶波, 叶景峰, 沈炎龙, 黄珂, 叶锡生, 赵军. 可调谐掺铥光纤激光器线宽压缩及其超光谱吸收应用. 物理学报, 2020, 69(3): 034205. doi: 10.7498/aps.69.20191515
    [5] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [6] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 刘松, 罗春荣, 翟世龙, 陈怀军, 赵晓鹏. 负质量密度声学超材料的反常多普勒效应. 物理学报, 2017, 66(2): 024301. doi: 10.7498/aps.66.024301
    [9] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [10] 王秀芝, 高劲松, 徐念喜. 利用集总LC元件实现频率选择表面极化分离的特性. 物理学报, 2013, 62(14): 147307. doi: 10.7498/aps.62.147307
    [11] 王秀芝, 高劲松, 徐念喜. 利用等效电路模型快速分析加载集总元件的微型化频率选择表面. 物理学报, 2013, 62(20): 207301. doi: 10.7498/aps.62.207301
    [12] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取. 物理学报, 2013, 62(3): 037806. doi: 10.7498/aps.62.037806
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [15] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [16] 樊京, 蔡广宇. 一种基于旋转调谐的超材料. 物理学报, 2010, 59(12): 8574-8578. doi: 10.7498/aps.59.8574
    [17] 汤世伟, 朱卫仁, 赵晓鹏. 光波段多频负折射率超材料. 物理学报, 2009, 58(5): 3220-3223. doi: 10.7498/aps.58.3220
    [18] 王连胜, 罗春荣, 黄 勇, 赵晓鹏. 基于电流变液的可调谐负磁导率材料. 物理学报, 2008, 57(6): 3571-3577. doi: 10.7498/aps.57.3571
    [19] 侯米娜, 刘红军, 赵 卫, 王屹山. 基于单晶体的可调谐参量超荧光的产生. 物理学报, 2007, 56(10): 5872-5877. doi: 10.7498/aps.56.5872
    [20] 张东科, 张冶文, 赫 丽, 李宏强, 陈 鸿. 利用集总L-C元件构造的一维metamaterials特性的实验研究. 物理学报, 2005, 54(2): 768-772. doi: 10.7498/aps.54.768
计量
  • 文章访问数:  7702
  • PDF下载量:  1547
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-22
  • 修回日期:  2013-10-14
  • 刊出日期:  2014-01-05

/

返回文章
返回